General Relativity Exam Problem 2

Nate Stemen (he/they)
Sep 16, 2021
AMATH 875

Problem Statement

Prove $\mathrm{GL}(n ; \mathbb{R})$ is a smooth manifold, and compute $T_{\mathbb{I}}(\mathrm{GL}(n ; \mathbb{R}))$ using the geometric definition of the tangent space.

Is $\mathrm{GL}(n ; \mathbb{R})$ a manifold?

Definition

$\mathrm{GL}(n ; \mathbb{R})$ is defined to be the group of all real invertible matrices.

$$
\mathrm{GL}(n ; \mathbb{R}) \stackrel{\text { def }}{=}\left\{A \in \mathbb{R}^{n \times n} \mid \operatorname{det}(A) \neq 0\right\}
$$

Is $\mathrm{GL}(n ; \mathbb{R})$ a manifold?

Definition

$\mathrm{GL}(n ; \mathbb{R})$ is defined to be the group of all real invertible matrices.

$$
\mathrm{GL}(n ; \mathbb{R}) \stackrel{\text { def }}{=}\left\{A \in \mathbb{R}^{n \times n} \mid \operatorname{det}(A) \neq 0\right\}
$$

- $\mathbb{R}^{n \times n} \cong \mathbb{R}^{n^{2}}$ is trivially a manifold

Is $\mathrm{GL}(n ; \mathbb{R})$ a manifold?

Definition

$\mathrm{GL}(n ; \mathbb{R})$ is defined to be the group of all real invertible matrices.

$$
\mathrm{GL}(n ; \mathbb{R}) \stackrel{\text { def }}{=}\left\{A \in \mathbb{R}^{n \times n} \mid \operatorname{det}(A) \neq 0\right\}
$$

- $\mathbb{R}^{n \times n} \cong \mathbb{R}^{n^{2}}$ is trivially a manifold
- $\mathrm{GL}(n ; \mathbb{R}) \subset \mathbb{R}^{n \times n}$

Is $\mathrm{GL}(n ; \mathbb{R})$ a manifold?

Definition

$\mathrm{GL}(n ; \mathbb{R})$ is defined to be the group of all real invertible matrices.

$$
\mathrm{GL}(n ; \mathbb{R}) \stackrel{\text { def }}{=}\left\{A \in \mathbb{R}^{n \times n} \mid \operatorname{det}(A) \neq 0\right\}
$$

- $\mathbb{R}^{n \times n} \cong \mathbb{R}^{n^{2}}$ is trivially a manifold
- $\mathrm{GL}(n ; \mathbb{R}) \subset \mathbb{R}^{n \times n}$
- $\operatorname{det}: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ is a continuous function

Is $\mathrm{GL}(n ; \mathbb{R})$ a manifold?

Definition

$\mathrm{GL}(n ; \mathbb{R})$ is defined to be the group of all real invertible matrices.

$$
\mathrm{GL}(n ; \mathbb{R}) \stackrel{\text { def }}{=}\left\{A \in \mathbb{R}^{n \times n} \mid \operatorname{det}(A) \neq 0\right\}
$$

- $\mathbb{R}^{n \times n} \cong \mathbb{R}^{n^{2}}$ is trivially a manifold
- $\mathrm{GL}(n ; \mathbb{R}) \subset \mathbb{R}^{n \times n}$
- det $: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ is a continuous function
- $\mathrm{GL}(n ; \mathbb{R})=\operatorname{det}^{-1}(\mathbb{R} \backslash\{0\})$

Is $\mathrm{GL}(n ; \mathbb{R})$ a manifold?

Definition

$\mathrm{GL}(n ; \mathbb{R})$ is defined to be the group of all real invertible matrices.

$$
\mathrm{GL}(n ; \mathbb{R}) \stackrel{\text { def }}{=}\left\{A \in \mathbb{R}^{n \times n} \mid \operatorname{det}(A) \neq 0\right\}
$$

- $\mathbb{R}^{n \times n} \cong \mathbb{R}^{n^{2}}$ is trivially a manifold
- $\mathrm{GL}(n ; \mathbb{R}) \subset \mathbb{R}^{n \times n}$
- det $: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ is a continuous function
- $\operatorname{GL}(n ; \mathbb{R})=\operatorname{det}^{-1}(\mathbb{R} \backslash\{0\})$
- Thus $\mathrm{GL}(n ; \mathbb{R})$ is an open subset of a smooth manifold

What's the tangent space at the identity?

- For any $A \in \mathrm{GL}(n ; \mathbb{R})$, there must be an open neighborhood around A, such that $\operatorname{det}(X) \neq 0$ for X in such neighborhood

What's the tangent space at the identity?

- For any $A \in \mathrm{GL}(n ; \mathbb{R})$, there must be an open neighborhood around A, such that $\operatorname{det}(X) \neq 0$ for X in such neighborhood
- In particular this holds for $A=\mathbb{1}$

What's the tangent space at the identity?

- For any $A \in \mathrm{GL}(n ; \mathbb{R})$, there must be an open neighborhood around A, such that $\operatorname{det}(X) \neq 0$ for X in such neighborhood
- In particular this holds for $A=\mathbb{1}$
- $\operatorname{det}(\mathbb{1}+\varepsilon X) \neq 0$ for all $X \in \mathbb{R}^{n \times n}$ and some (possibly very small) ε

What's the tangent space at the identity?

- For any $A \in \mathrm{GL}(n ; \mathbb{R})$, there must be an open neighborhood around A, such that $\operatorname{det}(X) \neq 0$ for X in such neighborhood
- In particular this holds for $A=\mathbb{1}$
- $\operatorname{det}(\mathbb{1}+\varepsilon X) \neq 0$ for all $X \in \mathbb{R}^{n \times n}$ and some (possibly very small) ε
- This defines a path $\gamma_{X}(t)=\mathbb{1}+t X$, such that $\gamma_{X}(0)=\mathbb{1}$ and $\frac{\mathrm{d}}{\mathrm{d} t} \gamma_{X}(0)=X$

What's the tangent space at the identity?

- For any $A \in \mathrm{GL}(n ; \mathbb{R})$, there must be an open neighborhood around A, such that $\operatorname{det}(X) \neq 0$ for X in such neighborhood
- In particular this holds for $A=\mathbb{1}$
- $\operatorname{det}(\mathbb{1}+\varepsilon X) \neq 0$ for all $X \in \mathbb{R}^{n \times n}$ and some (possibly very small) ε
- This defines a path $\gamma_{X}(t)=\mathbb{1}+t X$, such that $\gamma_{X}(0)=\mathbb{1}$ and $\frac{\mathrm{d}}{\mathrm{d} t} \gamma_{X}(0)=X$
- Thus $T_{\mathbb{1}}(\mathrm{GL}(n ; \mathbb{R}))=\mathbb{R}^{n \times n}$

