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Problem Statement

Prove GL(n;R) is a smooth manifold, and compute T} (GL(n;R)) using
the geometric definition of the tangent space.
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Is GL(n;R) a manifold?

Definition

GL(n;R) is defined to be the group of all real invertible matrices.

GL(n;R) = {A € R™™ | det(A) # 0}
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Is GL(n;R) a manifold?

Definition

GL(n;R) is defined to be the group of all real invertible matrices.

GL(n;R) = {A € R™™ | det(A) # 0}

o RXn RV’ jg trivially a manifold
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Is GL(n;R) a manifold?

Definition
GL(n;R) is defined to be the group of all real invertible matrices.

def

GL(n;R) = {4 € R™™ | det(A) £ 0}

Rn o R g trivially a manifold
GL(n;R) Cc R™*™

o det : R™"™ — R is a continuous function

o GL(n;R) =det ' (R\ {0})
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Is GL(n;R) a manifold?

Definition

GL(n;R) is defined to be the group of all real invertible matrices.

GL(n;R) = {A € R™™ | det(A) # 0}

Rn o R g trivially a manifold
GL(n;R) Cc R™*™

e det : R™™ — R is a continuous function
GL(n;R) =det™! (R {0})

Thus GL(n;R) is an open subset of a smooth manifold
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What'’s the tangent space at the identity?

e For any A € GL(n;R), there must be an open neighborhood around A, such that
det(X) # 0 for X in such neighborhood
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e For any A € GL(n;R), there must be an open neighborhood around A, such that
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e In particular this holds for A = 1
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e For any A € GL(n;R), there must be an open neighborhood around A, such that
det(X) # 0 for X in such neighborhood

e In particular this holds for A = 1
e det(1 +¢eX) #0 for all X € R™ ™ and some (possibly very small) e

3/3



What'’s the tangent space at the identity?

For any A € GL(n;R), there must be an open neighborhood around A, such that
det(X) # 0 for X in such neighborhood

In particular this holds for A = 1
det(1 +eX) # 0 for all X € R™*"™ and some (possibly very small) ¢
This defines a path vx(t) = 1 + ¢X, such that yx(0) = 1 and $vx(0) = X
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What'’s the tangent space at the identity?

For any A € GL(n;R), there must be an open neighborhood around A, such that
det(X) # 0 for X in such neighborhood

In particular this holds for A = 1

det(1 +eX) # 0 for all X € R™*"™ and some (possibly very small) ¢

This defines a path vx(t) = 1 + ¢X, such that yx(0) = 1 and $vx(0) = X
Thus T3(GL(n;R)) = R™*"
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