General Relativity Exam Problem 2

Nate Stemen (he/they)

Sep 16, 2021

AMATH 875

Problem Statement

Prove $GL(n;\mathbb{R})$ is a smooth manifold, and compute $T_1(GL(n;\mathbb{R}))$ using the geometric definition of the tangent space.

Definition

$$\mathsf{GL}(n;\mathbb{R}) \stackrel{\mathsf{def}}{=} \left\{ A \in \mathbb{R}^{n \times n} \mid \det(A) \neq 0 \right\}$$

Definition

 $\mathsf{GL}(n\,;\mathbb{R})$ is defined to be the *group* of all real invertible matrices.

$$\mathsf{GL}(n\,;\mathbb{R})\stackrel{\mathsf{def}}{=} \big\{A\in\mathbb{R}^{n\times n}\mid \det(A)\neq 0\big\}$$

ullet $\mathbb{R}^{n imes n} \cong \mathbb{R}^{n^2}$ is trivially a manifold

Definition

$$\mathsf{GL}(n\,;\mathbb{R})\stackrel{\mathsf{def}}{=} \big\{A\in\mathbb{R}^{n\times n}\mid \det(A)\neq 0\big\}$$

- ullet $\mathbb{R}^{n imes n} \cong \mathbb{R}^{n^2}$ is trivially a manifold
- $\mathsf{GL}(n\,;\mathbb{R})\subset\mathbb{R}^{n\times n}$

Definition

$$\mathsf{GL}(n\,;\mathbb{R})\stackrel{\mathsf{def}}{=} \big\{A\in\mathbb{R}^{n\times n}\mid \det(A)\neq 0\big\}$$

- ullet $\mathbb{R}^{n imes n} \cong \mathbb{R}^{n^2}$ is trivially a manifold
- $\mathsf{GL}(n\,;\mathbb{R})\subset\mathbb{R}^{n\times n}$
- ullet $\det: \mathbb{R}^{n \times n} \to \mathbb{R}$ is a continuous function

Definition

$$\mathsf{GL}(n\,;\mathbb{R})\stackrel{\mathsf{def}}{=} \big\{A\in\mathbb{R}^{n\times n}\mid \det(A)\neq 0\big\}$$

- ullet $\mathbb{R}^{n imes n} \cong \mathbb{R}^{n^2}$ is trivially a manifold
- $\mathsf{GL}(n\,;\mathbb{R})\subset\mathbb{R}^{n\times n}$
- $\det: \mathbb{R}^{n \times n} \to \mathbb{R}$ is a continuous function
- $GL(n; \mathbb{R}) = \det^{-1} (\mathbb{R} \setminus \{0\})$

Definition

$$\mathsf{GL}(n\,;\mathbb{R}) \stackrel{\mathsf{def}}{=} \left\{ A \in \mathbb{R}^{n \times n} \mid \det(A) \neq 0 \right\}$$

- ullet $\mathbb{R}^{n imes n} \cong \mathbb{R}^{n^2}$ is trivially a manifold
- $\mathsf{GL}(n;\mathbb{R}) \subset \mathbb{R}^{n \times n}$
- $\det: \mathbb{R}^{n \times n} \to \mathbb{R}$ is a continuous function
- $GL(n; \mathbb{R}) = \det^{-1}(\mathbb{R} \setminus \{0\})$
- ullet Thus $\mathsf{GL}(n\,;\mathbb{R})$ is an open subset of a smooth manifold

• For any $A \in GL(n;\mathbb{R})$, there must be an open neighborhood around A, such that $\det(X) \neq 0$ for X in such neighborhood

- For any $A \in GL(n; \mathbb{R})$, there must be an open neighborhood around A, such that $det(X) \neq 0$ for X in such neighborhood
- ullet In particular this holds for $A=\mathbbm{1}$

- For any $A \in GL(n; \mathbb{R})$, there must be an open neighborhood around A, such that $det(X) \neq 0$ for X in such neighborhood
- In particular this holds for A = 1
- $\det(\mathbb{1} + \varepsilon X) \neq 0$ for all $X \in \mathbb{R}^{n \times n}$ and some (possibly very small) ε

- For any $A \in GL(n; \mathbb{R})$, there must be an open neighborhood around A, such that $det(X) \neq 0$ for X in such neighborhood
- In particular this holds for A = 1
- $\det(\mathbb{1} + \varepsilon X) \neq 0$ for all $X \in \mathbb{R}^{n \times n}$ and some (possibly very small) ε
- This defines a path $\gamma_X(t)=\mathbb{1}+tX$, such that $\gamma_X(0)=\mathbb{1}$ and $\frac{\mathrm{d}}{\mathrm{d}t}\gamma_X(0)=X$

- For any $A \in GL(n; \mathbb{R})$, there must be an open neighborhood around A, such that $det(X) \neq 0$ for X in such neighborhood
- In particular this holds for $A=\mathbb{1}$
- $\det(\mathbb{1} + \varepsilon X) \neq 0$ for all $X \in \mathbb{R}^{n \times n}$ and some (possibly very small) ε
- This defines a path $\gamma_X(t)=\mathbb{1}+tX$, such that $\gamma_X(0)=\mathbb{1}$ and $\frac{\mathrm{d}}{\mathrm{d}t}\gamma_X(0)=X$
- Thus $T_1(\mathsf{GL}(n\,;\mathbb{R}))=\mathbb{R}^{n\times n}$