General Relativity Exam Problem 3

Nate Stemen (he/they)
Sep 30, 2021
AMATH 875

Topology of Minkowski Space

Asked 4 years, 5 months ago Active 4 years, 5 months ago Viewed 1 k times

Is the topology of Minkowski space the same as that of \mathbb{R}^{4} ? My thoughts would be no, because of the very different inner products define very different metrics, and because the metric determines
asked Apr 13 ' 17 at 15:09
3 Nㅜㄴ Nate Stemen
480 - 3 - 11

Problem Statement

Does the topology on Minkowski space agree with the "metric topology" induced by the metric $\eta_{\mu \nu}=\left[\begin{array}{cccc}-1 & & & \\ & 1 & 1 & \\ & & & 1\end{array}\right]$?

What is the topology on $\mathbb{R}^{1,3}$ with the metric $\eta_{\mu \nu}=\left[\begin{array}{cccc}-1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1\end{array}\right]$?

What's Minkowski space?

$\mathbb{R} \times \mathbb{R}^{3}$ equipped with the metric

$$
\eta_{\mu \nu}=\left[\begin{array}{llll}
-1 & & & \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right] .
$$

Recall: What's the metric tensor?

Definition

Let M be a smooth manifold. The metric tensor g is a rank $(0,2)$ tensor field that is

- bilinear
- symmetric
- nondegenerate

Recall: What's the metric tensor?

Definition

Let M be a smooth manifold. The metric tensor g is a rank $(0,2)$ tensor field that is

- bilinear
- symmetric
- nondegenerate

Another way of viewing g is that for each $p \in M$ we have a nondegenerate symmetric bilinear form $g_{p}: T_{p}(M) \times T_{p}(M) \rightarrow \mathbb{R}$ that varies smoothly as we move p.

What happens when $T_{p}(M) \cong M$ for all p ?

- If $T_{p}(M) \cong M$ then our metric tensor is extended to all of $M: g_{p}: M \times M \rightarrow \mathbb{R}$
- Can drop subscript p
- Hence we have a nondegenerate, symmetric bilinear form on all of M
- Sounds like an inner product?
- Can then define a norm: $\|u\|_{g} \stackrel{\text { def }}{=} g(u, u)$
- Can then define a metric: $d_{\|\cdot\|_{g}}(x, y) \stackrel{\text { def }}{=}\|x-y\|_{g}$

What is the metric topology?

Definition (Metric Space)

A metric space is a pair (M, d) where M is a set, and d is a function $d: M \times M \rightarrow \mathbb{R}$ satisfying

- $d(x, y)=0$ if and only if $x=y$,
- $d(x, y)=d(y, x)$, and
- $d(x, z) \leq d(x, y)+d(y, z)$.

What is the metric topology?

Definition (Metric Space)

A metric space is a pair (M, d) where M is a set, and d is a function $d: M \times M \rightarrow \mathbb{R}$ satisfying

- $d(x, y)=0$ if and only if $x=y$,
- $d(x, y)=d(y, x)$, and
- $d(x, z) \leq d(x, y)+d(y, z)$.

Definition (Metric Topology)

For any $x \in M$ and $r>0$, we define the open ball of radius r to be

$$
B(x ; r)=\{y \in M: d(x, y)<r\} .
$$

These open balls form a base for a topology.
\mathbb{R}^{n} (the set) taken with the open balls generated by the Euclidean metric form the standard topology for \mathbb{R}^{n} (the topological space).

Open Balls in Minkowski Space

$\eta_{\mu \nu}$ isn't a proper inner product

- $\eta_{\mu \nu}$ isn't a proper inner product because it's not positive definite!

$\eta_{\mu \nu}$ isn't a proper inner product

- $\eta_{\mu \nu}$ isn't a proper inner product because it's not positive definite!
- $\eta\left(\left[\begin{array}{l}t \\ x\end{array}\right],\left[\begin{array}{l}\tilde{t} \\ \tilde{x}\end{array}\right]\right)=-(t-\tilde{t})^{2}+(x-\tilde{x})^{2}$ can be negative

$\eta_{\mu \nu}$ isn't a proper inner product

- $\eta_{\mu \nu}$ isn't a proper inner product because it's not positive definite!
- $\eta\left(\left[\begin{array}{l}t \\ x\end{array}\right],\left[\begin{array}{c}\tilde{t} \\ \tilde{x}\end{array}\right]\right)=-(t-\tilde{t})^{2}+(x-\tilde{x})^{2}$ can be negative
- I have no idea of the open balls induced by η can form a base for a topology

$\eta_{\mu \nu}$ isn't a proper inner product

- $\eta_{\mu \nu}$ isn't a proper inner product because it's not positive definite!
- $\eta\left(\left[\begin{array}{l}t \\ x\end{array}\right],\left[\begin{array}{c}\tilde{t} \\ \tilde{x}\end{array}\right]\right)=-(t-\tilde{t})^{2}+(x-\tilde{x})^{2}$ can be negative
- I have no idea of the open balls induced by η can form a base for a topology
- I think we just take the topology of $\mathbb{R}^{1,3}$ to be that of standard \mathbb{R}^{4} because of this wonkyness

$\eta_{\mu \nu}$ isn't a proper inner product

- $\eta_{\mu \nu}$ isn't a proper inner product because it's not positive definite!
- $\eta\left(\left[\begin{array}{l}t \\ x\end{array}\right],\left[\begin{array}{c}\tilde{t} \\ \tilde{x}\end{array}\right]\right)=-(t-\tilde{t})^{2}+(x-\tilde{x})^{2}$ can be negative
- I have no idea of the open balls induced by η can form a base for a topology
- I think we just take the topology of $\mathbb{R}^{1,3}$ to be that of standard \mathbb{R}^{4} because of this wonkyness
- After all one usually specifies

$$
\text { set } \longrightarrow \text { topology } \longrightarrow \text { differentiable structure } \longrightarrow \cdots
$$

so the topology is set from the beginning

$\eta_{\mu \nu}$ isn't a proper inner product

- $\eta_{\mu \nu}$ isn't a proper inner product because it's not positive definite!
- $\eta\left(\left[\begin{array}{l}t \\ x\end{array}\right],\left[\begin{array}{c}\tilde{t} \\ \tilde{x}\end{array}\right]\right)=-(t-\tilde{t})^{2}+(x-\tilde{x})^{2}$ can be negative
- I have no idea of the open balls induced by η can form a base for a topology
- I think we just take the topology of $\mathbb{R}^{1,3}$ to be that of standard \mathbb{R}^{4} because of this wonkyness
- After all one usually specifies

$$
\text { set } \longrightarrow \text { topology } \longrightarrow \text { differentiable structure } \longrightarrow \cdots
$$

so the topology is set from the beginning

- I thought the metric might have to coincide with the topology, but perhaps not

