General Relativity Exam Problem 4

Nate Stemen (he/they)
Oct 21, 2021
AMATH 875

Problem Statement

Give an example of two isometric (pseudo) Riemannian manifolds.

Recall

- Let (M, g) and (N, h) be two (pseudo) Riemannian manifolds.
- Let $f: M \rightarrow N$ be a diffeomorphism.

Recall

- Let (M, g) and (N, h) be two (pseudo) Riemannian manifolds.
- Let $f: M \rightarrow N$ be a diffeomorphism.

Pullback of metric tensor

We can pull back the metric on N to one on M by precomposition:

$$
f^{*} h \stackrel{\text { def }}{=} h(f(-), f(-)) .
$$

Recall

- Let (M, g) and (N, h) be two (pseudo) Riemannian manifolds.
- Let $f: M \rightarrow N$ be a diffeomorphism.

Pullback of metric tensor

We can pull back the metric on N to one on M by precomposition:

$$
f^{*} h \stackrel{\text { def }}{=} h(f(-), f(-)) .
$$

Definition (Isometry)

If f satisfies $f^{*} h=g$, then f is called an isometry.

Our Manifolds

Setup

Take $M=N=\mathbb{R}^{n}$, and equip M with the standard Euclidean metric $g=\langle-\mid-\rangle$, and N with $h=\langle A \cdot-\mid A \cdot-\rangle$ where $A \in \mathrm{SO}(n)$ is a rotation.

Our Manifolds

Setup

Take $M=N=\mathbb{R}^{n}$, and equip M with the standard Euclidean metric $g=\langle-\mid-\rangle$, and N with $h=\langle A \cdot-\mid A \cdot-\rangle$ where $A \in \mathrm{SO}(n)$ is a rotation.

- Think of this as \mathbb{R}^{n} and a rotated copy $A \cdot \mathbb{R}^{n}$.

Our Manifolds

Setup

Take $M=N=\mathbb{R}^{n}$, and equip M with the standard Euclidean metric $g=\langle-\mid-\rangle$, and N with $h=\langle A \cdot-\mid A \cdot-\rangle$ where $A \in \mathrm{SO}(n)$ is a rotation.

- Think of this as \mathbb{R}^{n} and a rotated copy $A \cdot \mathbb{R}^{n}$.
- Define $f: M \rightarrow N$ by $v \mapsto A^{\top} \cdot v$.

Our Manifolds

Setup

Take $M=N=\mathbb{R}^{n}$, and equip M with the standard Euclidean metric $g=\langle-\mid-\rangle$, and N with $h=\langle A \cdot-\mid A \cdot-\rangle$ where $A \in \mathrm{SO}(n)$ is a rotation.

- Think of this as \mathbb{R}^{n} and a rotated copy $A \cdot \mathbb{R}^{n}$.
- Define $f: M \rightarrow N$ by $v \mapsto A^{\top} \cdot v$.
- $\left(f^{*} h\right)(a, b) \stackrel{\text { def }}{=} h(f(a), f(b))=\left\langle A A^{\top} a \mid A A^{\top} b\right\rangle=\langle a \mid b\rangle=g(a, b)$.

Our Manifolds

Setup

Take $M=N=\mathbb{R}^{n}$, and equip M with the standard Euclidean metric $g=\langle-\mid-\rangle$, and N with $h=\langle A \cdot-\mid A \cdot-\rangle$ where $A \in \mathrm{SO}(n)$ is a rotation.

- Think of this as \mathbb{R}^{n} and a rotated copy $A \cdot \mathbb{R}^{n}$.
- Define $f: M \rightarrow N$ by $v \mapsto A^{\top} \cdot v$.
- $\left(f^{*} h\right)(a, b) \stackrel{\text { def }}{=} h(f(a), f(b))=\left\langle A A^{\top} a \mid A A^{\top} b\right\rangle=\langle a \mid b\rangle=g(a, b)$.
- a and b are arbitrary, thus $f^{*} h=g$, and f is an isometry (as expected).

Extensions

- This works for any $A \in \mathrm{GL}(n ; \mathbb{R})$ where we define f by $f(v)=A^{-1} \cdot v$ instead of transpose.
- Can also be generalized to flows on manifolds, and often Lie groups ${ }^{1}$ generate flows.

[^0]
[^0]: ${ }^{1}$ Manifolds with a group structure that is compatible with the differential structure.

