General Relativity Exam Problem 4

Nate Stemen (he/they)

Oct 21, 2021

AMATH 875

Give an example of two isometric (pseudo) Riemannian manifolds.

- Let $(M,g) \mbox{ and } (N,h)$ be two (pseudo) Riemannian manifolds.
- Let $f: M \to N$ be a diffeomorphism.

- Let (M,g) and (N,h) be two (pseudo) Riemannian manifolds.
- Let $f: M \to N$ be a diffeomorphism.

Pullback of metric tensor

We can pull back the metric on N to one on M by precomposition:

$$f^*h \stackrel{\text{\tiny def}}{=} h(f(-), f(-)).$$

- Let (M,g) and (N,h) be two (pseudo) Riemannian manifolds.
- Let $f: M \to N$ be a diffeomorphism.

Pullback of metric tensor

We can pull back the metric on N to one on M by precomposition:

$$f^*h \stackrel{\text{\tiny def}}{=} h(f(-), f(-)).$$

Definition (Isometry)

If f satisfies $f^*h = g$, then f is called an isometry.

Take $M = N = \mathbb{R}^n$, and equip M with the standard Euclidean metric $g = \langle -|-\rangle$, and N with $h = \langle A \cdot -|A \cdot -\rangle$ where $A \in SO(n)$ is a rotation.

• Think of this as \mathbb{R}^n and a rotated copy $A \cdot \mathbb{R}^n$.

- Think of this as \mathbb{R}^n and a rotated copy $A \cdot \mathbb{R}^n$.
- Define $f: M \to N$ by $v \mapsto A^{\intercal} \cdot v$.

- Think of this as \mathbb{R}^n and a rotated copy $A \cdot \mathbb{R}^n$.
- Define $f: M \to N$ by $v \mapsto A^{\mathsf{T}} \cdot v$.
- $(f^*h)(a,b) \stackrel{\text{\tiny def}}{=} h(f(a),f(b)) = \langle AA^{\intercal} a | AA^{\intercal} b \rangle = \langle a | b \rangle = g(a,b).$

- Think of this as \mathbb{R}^n and a rotated copy $A \cdot \mathbb{R}^n$.
- Define $f: M \to N$ by $v \mapsto A^{\mathsf{T}} \cdot v$.
- $(f^*h)(a,b) \stackrel{\text{def}}{=} h(f(a),f(b)) = \langle AA^{\mathsf{T}} a | AA^{\mathsf{T}} b \rangle = \langle a | b \rangle = g(a,b).$
- a and b are arbitrary, thus $f^*h = g$, and f is an isometry (as expected).

- This works for any $A \in GL(n; \mathbb{R})$ where we define f by $f(v) = A^{-1} \cdot v$ instead of transpose.
- Can also be generalized to flows on manifolds, and often Lie groups¹ generate flows.

¹Manifolds with a group structure that is compatible with the differential structure.