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In these lectures we dive deeper into understanding the “shape” of our manifold.
As we saw last time, definining a metric gµν(x) allows us to measure infinitesimal
distances which can be extended to finite distance. With a measure of distance one can
study how closely (or not) the pythagorean theorem holds. This gives some notion
of shape, but we’d like to understand it further. To this end we thought about what
happens when you move a vector around on the sphere, and in particular how one
can move it in such a way so that it faces a different direction upon returning it to it’s
starting point. All despite transporting the vector in such a way that it is aligned with
the latitudes/longitudes.

We thus try and understand shape through studying the derivative of vectors, and
we started with defining the covariant derivative.

∇ : T(M)× T(M) −→ T(M)

(η, ξ) 7−→ ∇ξη

This derivative must obey the two following conditions.

∇ f ξη = f∇ξη for all f ∈ F (M)

∇ξ( f η) = η∇ξ f + f∇ξη

We see we have the familiar Leibniz rule in the second condition. This derivative does
all sorts of complicated things in coordinates, involving Christoffel symbols, but we
will not go into it here, besides to say here is the action of the covariant derivative in a
given chart:

∇ ∂

∂xi

∂

∂xj = Γk
ij(x)

∂

∂xk .

We can then define a version of this derivative known as the absolute covariant
derivative without the “direction” vector which we simply denote ∇ without the
subscript. A neat fact about this is that ∇η(ξ) = ∇ξη. With such machinery we are
able to understand what parallel transport means. If we have a path γ : R → M, then
a vector field η is auto-paralllel along γ if ∇γ̇η = 0. That is, the vector field doesn’t
change under parallel transport along γ.

We can then define a geodesic, or shortest path between two points as follows. Let
γ : [0, 1] → M be a path. If ∇γ̇γ̇ = 0, then γ is a geodesic. With this, and out picture
from the start of moving vectors around a sphere, we can see how we might be able to
use these ideas to understand the shape of M.

We then got into all sorts of stuff about curvature, and torsion that I’m feeling pretty
lost on.
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