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# 1

Recall that the center of a matrix Lie group G is by definition Z(G) :=
{g ∈ G : gh = hg for all h ∈ G}. Below we let n ≥ 2.

(a) With the help of Schur’s lemma, determine the centers of U(n) and SU(n).
Deduce that U(n) and SU(n)× U(1) are not isomorphic as Lie groups.

(b) Prove that U(n) and SU(n)× U(1) nonetheless have isomorphic Lie alge-
bras.

Solution. (a) Let A ∈ Z(U(n)), then by the definition of U(n) we can view A as a map

taking U(n) to itself U(n) A−−→ U(n). Let ρ : U(n) → GL(n; C) be the representation
defined by ρ(X) = X. Then A intertwines ρ:

A ◦ ρ(X) = A(ρ(X)) = AX = XA = ρ(X) ◦ A.

By Schur’s lemma A must then either be 0 or a scalar multiple of the identity 1. The
unitary group does not include 0 so A = λ1, and in addition

AA† = λλ1 = 1 =⇒ λ = eiφ.

Thus the center of U(n) is
{

eiφ1 : φ ∈ R
}

which is isomorphic to S1 the circle group.
The above argument applies to SU(n) as well, but we have the extra condition that

det A = 1. By properties of the determinant1 we know det A = einφ = 1 so the center
of SU(n) is the group of n-th roots of unity. The n-th roots of unity are known to be
isomorphic to Z/nZ, so we will say Z(SU(n)) = Z/nZ.

Further we have Z(SU(n)× U(1)) = Z/nZ × S1 which is clearly not isomorphic
to S1. Now if U(n) was isomorphic to SU(n)× U(1), then their centers would also be
isomorphic, but they are not, so they cannot be isomorphic as groups, and hence Lie
groups.

(b) First we define the following function Φ : SU(n)× U(1) → U(n):

Φ(X, α) := αX.

This is surely an element of U(n) because αX(αX)† = ααXX† = 1. It is also a group
homomorphism

Φ(X, α)Φ(Y, β) = αXβY = αβXY = Φ(XY, αβ)

and is clearly continuous since we’re just doing scalar multiplication. Thus Φ is a Lie
group homomorphism. To see this map is a surjection, take X ∈ U(n) and we will find
a pair (Y, α) ∈ SU(n)× U(1) that hits it. Some inspection yields

Y =
X

(det X)1/n α = 1.

1det(αA) = αn det A if A ∈ Mn(F).
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Thus Φ is a surjection. We now show Φ also has a discrete kernel. If Φ(X, α) = αX = 1,
then first X must be diagonal, and hence also in the center of SU(n). As we found above
Z(SU(n)) ∼= Z/nZ, and hence ker Φ is discrete.

By Proposition 3.31 of Hall (page 63), we have Lie(ker Φ) = ker ϕ where ϕ is a Lie
algebra homomorphism between the Lie algebras of SU(n)× U(1) and U(n). However,
the Lie algebra of a discrete group is trivial, and hence ker ϕ is trivial which implies
that ϕ is an isomorphism of Lie algebras.
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# 2

(a) Prove that every element of SO(3) except the identity belongs to exactly
one maximal torus in SO(3).

(b) Consider the following maximal torus in SO(3):

T =

{(
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

)
: θ ∈ R

}
Prove that it’s Weyl group is isomorphic to the finite abelian group Z2.

Solution. (a) Using the maximal torus ↔ Cartan subalgebra correspondence we can
pass to so(3) and rephrase the problem as “prove that every vector of so(3) except the
zero vector belongs to exactly one maximal torus in so(3).” Here we have the following
basis

e1 =

 0 1 0
−1 0 0
0 0 0

 e2 =

 0 0 1
0 0 0
−1 0 0

 e3 =

0 0 0
0 0 1
0 −1 0


with the following commutation relations:

[e1, e2] = −e3 [e1, e3] = e2 [e2, e3] = −e1.

Since so(3) is not commutative there are no 3-dimensional Cartan subalgebras. The
commutation relations also show there are no 2-dimensional Cartan subalgebras since
we never have

[
ei, ej

]
= ei. Hence all the Cartan subalgebras are 1-dimensional, and

because they must span so(3), they only intersect at the origin. We can now expo-
nentiate these Cartan subalgebras to obtain maximal tori which also only intersect at

exp
([ 0 0 0

0 0 0
0 0 0

])
= 13.

The first way I thought about this problem was to show that rotations around the
3-axis are all maximal tori, but I couldn’t figure out how to show they were the only
maximal tori.

(b) First note that T ⊆ N(T) almost by definition. Now to calculate what else is in
N(T) we need a general paremetrization of elements in SO(3) and for that we look to
the Euler angle decomposition. In particular if Rz(θ) is a rotation of angle θ about the
z-axis, then any element A ∈ SO(3) can be written as

A = Rz(α)Rx(β)Rz(γ).

Thus we need to figure out for which α, β, γ ∈ [0, 2π) does ARz(θ)A⊺ = Rz(ϕ). Doing
the algebra by hand is possible, but thankfully we have computers.

import sympy as sym
from sympy.abc import alpha , beta , gamma , theta
from sympy.matrices import rot_axis1 , rot_axis3

r = rot_axis3(alpha) * rot_axis1(beta) * rot_axis3(gamma)
normalized = sym.simplify(r * rot_axis3(theta) * r.T)
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Now we have normalized2 computed as ARz(θ)A⊺ and we know it should look like
another z-rotation. Thus [A]33 = 1 because z-rotations fix the z-axis. We can then access
the [A]33 element with normalized[8]:

print(normalized[8])

sin2 (β) cos (θ)− sin2 (β) + 1 (1)

Since this must be equal to 1 for all θ we must have β = 0, π. If β = 0, then A is purely
a rotation around the z-axis which we already knew was in N(T). In the case β = π,
we can take α = 0 = γ to conclude the following matrix is in N(T):1 0 0

0 −1 0
0 0 −1

. (2)

Since this is clearly not in T (it doesn’t have a +1 in the bottom right hand corner).
Indeed these β are the only possible values because of eq. (1), and we can verify they
work with the computer.

print(normalized.subs( { beta: sym.pi } ))cos (θ) − sin (θ) 0
sin (θ) cos (θ) 0

0 0 1


Indeed we have the same thing with β = 0, but that can be seen more easily from
A = Rz(α)Rx(β = 0)Rz(γ) = Rz(α + γ).

Thus the Weyl group N(T)/T contains two elements: one being the identity [1], and
the other from eq. (2) which we will call [x]. They have the following multiplicative
structure:

[1] · [1] = [1] [1] · [x] = [x] [x] · [x] = 1

This is exactly the structure of Z/2Z under the map [1] → [0] and [x] → [1].

2I’ll include a page with the entire matrix printed, but it’s too big (and not very helpful) to put here.
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# 3

Recall the SU(2)-representation Vm(C2). For 0 ≤ k ≤ m we write fk(z1, z2) =

zk
1zm−k

2 . Prove the following defines an SU(2) invariant inner product on Vm(C2):(
m

∑
k=0

αk fk,
m

∑
l=0

βl fl

)
=

m

∑
k=0

k!(m − k)!αkβk.

Solution. First such an invariant product must exist by Weyl’s unitarian3 trick. Suppose
⟨−|−⟩ is an inner product on Vm(C2), then we can define a new inner product by
averaging over all the elements of SU(2):

( f , h) :=
∫
SU(2)

⟨Πm(g) · f | Πm(g) · h⟩dµ(g) (3)

This new inner product is manifestly SU(2) invariant, and as we proved in Assignment 3
problem 6(b), the invariant inner product is unique up to scaling by a positive constant.

I’ve written eq. (3) assuming we have a normalized Haar measure that can be
defined for all compact4 Lie groups. In particular it is defined to be left invariant, but it
is also right invariant.

Perhaps another way to see such an inner product exists is to use the isomorphism
we proved in assignment 1 problem 6(c). That is SU(2) ∼= Sp(1). Indeed the action of
unit quaternions is just a rotation, and simultaneously rotating vectors inside an inner
product does not affect the value.

Now to see if this inner product defined above is actually SU(2)-invariant we need
to test if (Πm(g) · f , Πm(g) · h) = ( f , h) for all g ∈ SU(2). Our first step will be to
writen out Πm(g) · f for an arbitrary element f ∈ Vm(C2). Here we use the following
parametrization of elements g ∈ SU(2): g =

[
α −β
β α

]
.[

Πm(g) · f
]
(z) = f (g−1[ z1

z2

]
)

= f
([

α β
−β α

][
z1
z2

])
=

m

∑
k=0

ak
(
αz1 + βz2

)k
(−βz1 + αz2)

m−k

=
m,k,m−k

∑
k,l,p=0

ak

(
k
l

)(
m − k

p

)
(−1)m−k−pαpαk−l βm−k−pβ

lzm−l−p
1 zl+p

2

From here I’d really like to be able to write this as ∑m
n=0 ãn fn, but I cannot find a way. I

can see that the powers of z1 and z2 are intimately tied to l + p, but I cannot figure out
how to get rid of the l’s and p’s.

If I was able to do this, I would then take ∑m
k=0 k!(m − k)!ãkb̃k and show it’s equal to

∑m
k=0 k!(m − k)!akbk. Easier said than done though.

I also tried acting A ∈ SU(2) on a single basis element fk to try and make this easier,
but I still couldn’t get anywhere.

3Is it unitarian or unitary?
4And maybe locally compact as well?
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# 4

Define V1,1(C
3) := spanC

{
zizj : i, j ∈ {1, 2, 3}

}
. For f ∈ V1,1(C

3) and A ∈ SU(3)
we let (Π1,1(A) · f )(z) := f (A−1z). Also, let △ ≡ ∑3

j=1
∂

∂zj
∂

∂zj
and define

H1,1(C
3) :=

{
f ∈ V1,1(C

3) : △ f = 0
}

.
(a) Prove that (Π1,1, V1,1(C

3)) is a complex representation of SU(3) and that
H1,1(C

3) is an invariant subspace.
(b) Consider the associated sl(3; C)-representation on H1,1(C

3). Prove that this
is irreducible, and find it’s dimension and highest weight.

Solution. (a) First let’s the action of Π1,1(A) does indeed bring us back into V1,1(C
3).

We’ll represent an arbitrary vector f ∈ V1,1(C
3) as f = ∑3

i,j=1 aijzizj.[
Π1,1(A) · f

]
(z) = f (A−1z)

=
3

∑
i,j=1

aij

(
a−1

i1 z1 + a−1
i2 z2 + a−1

i3 z1

)(
a−1

j1 zj + a−1
j2 z2 + a−1

j3 z3

)
Written out this way it’s not hard to see this is again an element of V1,1(C

3). To see this
map is also a Lie group homomorphism we can look at the action of A and B on f .(

Π1,1(A) ·
[
Π1,1(B) · f

])
(z) =

[
Π1,1(B) · f

]
(A−1z)

= f (B−1A−1z)

=
[
Π1,1(AB) · f

]
(z)

That Π1,1 is continuous follows from the fact that matrix inversion is continuous.
Now we compute what H1,1(C

3) looks like with respect to △ defined above. I’ll use
∂i ≡ ∂

∂zi
and ∂i ≡

∂
∂zi

. We have

∂k∂k

3

∑
i,j=1

aijzizj = ∂k

3

∑
i,j=1

aijziδjk = ∂k

3

∑
i=1

aikzi = akk

and thus for a general element f we have

△ f =
3

∑
i=1

aii

and thus
H1,1(C

3) =
{

f ∈ V1,1(C
3) : ∑ aii = 0

}
.

To show this is an invariant subspace we will show that the action of U ∈ SU(3)
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commutes with the action of the Laplacian △.

∂i( f (Uz)) =
3

∑
k=1

∂i f (Uz)uki

∂i∂i( f (Uz)) =
3

∑
k,l=1

∂i∂i f (Uz)ukiuli

△
[

f (Uz)
]
=

3

∑
i,k,l=1

∂i∂i f (Uz)δkl = (△ f )(Uz)

Thus if △ f (z) ≡ 0, then △ f (Uz) = 0.
(b) The above representation of SU(3) gives us a representation of the Lie algebra

su(3), and by complex linearity a representation on the complexification su(3)C
∼=

sl(3; C) which we can calculate with

π1,1(X) :=
d
dt

Π1,1(etX)

∣∣∣∣
t=0

.

Acting on an element f ∈ V1,1(C
3) and z ≡ z(t) =

[ z1(t)
z2(t)
z3(t)

]
we have

[
π1,1(X) · f

]
(z) =

d
dt

f (e−tXz)
∣∣∣∣
t=0

=
∂ f
∂z1

∂z1

∂t

∣∣∣∣
t=0

+
∂ f
∂z2

∂z2

∂t

∣∣∣∣
t=0

+
∂ f
∂z3

∂z3

∂t

∣∣∣∣
t=0

= − ∂ f
∂z1

(X11z1 + X12z2 + X13z3)

− ∂ f
∂z2

(X21z1 + X22z2 + X23z3)

− ∂ f
∂z3

(X31z1 + X32z2 + X33z3)

We can now calculate π1,1(X) for every basis element of sl(3; C) using the basis defined
in Hall on page 142.

π1,1(H1) = −z1
∂

∂z1
+ z2

∂

∂z2
π1,1(H2) = −z2

∂

∂z2
+ z3

∂

∂z3

π1,1(X1) = −z2
∂

∂z1
π1,1(X2) = −z3

∂

∂z2
π1,1(X3) = −z3

∂

∂z1

π1,1(Y1) = −z1
∂

∂z2
π1,1(Y2) = −z2

∂

∂z3
π1,1(Y3) = −z1

∂

∂z3

Now, H1 and H2 applied to an arbitrary element of H1,1(C
3):

π1,1(H1) · f = −a11z1z1 − a12z1z2 − a13z1z3 + a21z2z1 + a22z2z2 + a23z2z3

π1,1(H2) · f = −a21z2z1 − a22z2z2 − a23z2z3 + a31z3z1 + a32z3z2 + a33z3z3
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Vector v Weight µ

a11z1z1 + a12z1z2 + a13z1z3 (−1, 0)
a21z2z1 + a22z2z2 + a23z2z3 (1,−1)
a31z3z1 + a32z3z2 + a33z3z3 (0, 1)

Table 1: Weight Spaces for h = span(H1, H2)

Where we have to remember a33 can be written as −(a11 + a22) because f is harmonic.
From the action of H1 and H2 we can see we have three weight spaces. Since we are
looking for an irreducible representation we will look at the vector subspace with a
weight composed of non-negative integers. We now check if the associated vector gives
us the satisfying conditions to make this representation one of highest weight cyclic.
It’s not hard to see because π1,1(Xi) only involves the partial derivatives of z1 and z2,
that all of π1,1(Xi) · v = 0 for all i = 1, 2, 3.

We now apply π1,1(Yi) to this vector to see if v “generates” the entire vector space.

π1,1(Y1) · v = 0
π1,1(Y2) · v = −a31z2z1 − a32z2z2 − a33z2z3

π1,1(Y3) · v = −a31z1z1 − a32z1z2 − a33z1z3

Thus the only invariant subspace containing v is H1,1(C
3) itself, and hence this rep-

resentation is highest weight cyclic. We now use two facts from Hall, and one from
class:

Fact 1 (Theorem 10.9, Hall page 275). Every finite-dimensional representation of a semisimple
Lie algebra is completely reducible.

Fact 2 (Lecture 65). sl(n; C) is semisimple.

Fact 3 (Proposition 6.14, Hall page 150). Suppose (π, V) is a completely reducible repre-
sentation of sl(3; C) that is also a highest weight cyclic. Then π is irreducible.

Combining all these we see (π1,1,H1,1(C
3)) is indeed irreducible with dimension 8

and highest weight (0, 1).
I’ll be honest this feels wrong (like it should have a higher highest weight), but I

really can’t find anything wrong.
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# 5

Recall the following basis for sl(2; R) (also for sl(2; C)):

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)

(a) Prove that adX : sl(2; C) → sl(2; C) is not diagonalizable, while adA :
gl(n; C) → gl(n; C) is diagonalizable for all A ∈ u(n). Deduce that u(n)
contains no subalgebra isomorphic to sl(2; R).

(b) Prove that the only ideals of sl(2; R) are {0} and sl(2; R). Deduce from this
and part (a) that there are no non-trivial Lie algebra homomorphisms from
sl(2; R) into u(n).

(c) Deduce from parts (a) and (b) that every finite-dimensional unitary complex
representation (Π, V) of SL(2; R) is trivial in the sense that Π(A) = idV for
all A ∈ SL(2; R). You may take for granted that SL(2; R) is connected.

Solution. (a) Since the action of adX is determined entirely on the action on the basis
elements we recall those here:

adX(H) = −2X adX(X) = 0 adX(Y) = H (4)

Since adX is a linear operator on sl(2; C) we can write it as a 3 × 3 complex matrix if
we use the following isomorphism:

Y →
[ 1

0
0

]
H →

[ 0
1
0

]
X →

[ 0
0
1

]
.

With this we can treat sl(2; C) like C3 and hence can compute the matrix representation
of adX. Indeed a short calculation yields

adX =

0 0 0
1 0 0
0 −2 0

. (5)

To see if this matrix is diagonalizable (which maybe you can just tell, but spelling it out
more carefully was helpful for me) we can use the following fact.

Fact 4. A matrix is diagonalizable if and only if for every eigenvalue, it’s corresponding algebraic
and geometric multiplicity are equal.

Calculating the characteristic polynomial of eq. (5) we find

det
([ 0 0 0

1 0 0
0 −2 0

]
− λ13

)
= −λ3

Hence the only eigenvalue is 0, but eq. (4) shows the only eigenvector with eigenvalue
0 is X. Clearly the eigenspace spanned by X is not three dimensional despite having
algebraic multiplicity 3. Thus adX is diagonalizable.

To see that adA is diagonalizable we will use another fact.

Fact 5. Every skew-hermitian matrix is diagonalizable.

9



Lie Groups and Lie Algebras Final Assessment Nate Stemen

Now let Axi = λixi with 1 ≤ i ≤ n. Even though xi might equal xj we can still
have n-eigenvectors if they repeat. In particular we can then construct the matrices xix†

j .
Applying adA to these we have

adA(xix†
j ) = Axix†

j − xix†
j A = (Axi)x†

j + xi(Axj)
† = (λi + λj)xix†

j .

Where we now have another eigenvalue λi + λj. Since adA is a linear operator it
can be though of as a matrix of size n2 × n2, and we just found n2 (possibly) distince
eigenvectors/values. Hence adA is diagonalizable.

(b) Let i ⊆ sl(2; R) be our nonempty ideal. Since it is nonempty it must contain
some element of the form

αH + βX + γY. (6)

Since i is an ideal we must have [sl(2; R), i] ⊆ i, and in particular we can look at eq. (6)
under adH.

[H, αH + βX + γY] = β[H, X] + γ[H, Y] = 2βX − 2γY.

Thus there are two cases we must consider: α = 0 and α ̸= 0 where i contains H.
If H ∈ i, then by definition of an ideal we must have [X, H] = −2X ∈ i and

[Y, H] = 2Y ∈ i and thus i = sl(2; R).
If α = 0 and the ideal i only contains elements of the form βX + γY, we again must

have [sl(2; R), i] ⊆ i by definition. In particular we can choose to take [X, 2βX − 2γY] =
−2γH, and hence if γ ̸= 0 then i must contain H. We can then use the argument as
above to conclude the ideal is equal to the entire group. If γ = 0, and the ideal only
contains βX, we can look at [Y, βX] = −βH and again if β ̸= 0 then the ideal contains
H. Thus if all α, β, γ = 0, then i = {0}. Thus we conclude sl(2; R) only contains trivial
ideals.

If ϕ : sl(2; R) → u(n) is a Lie algebra homomorphism, then we know from class
that ker ϕ ⊆ sl(2; R) must be an ideal. From above we know we only have two options
for this ideal. First ker ϕ = sl(2; R) in which case everything gets sent to 0 and is trivial.
In the second case ker ϕ = {0}, and by one of the isomorphism theorems we have

sl(2; R)/ ker ϕ ∼= sl(2; R) ∼= im ϕ ⊆ u(n).

But as we’ve shown above u(n) does not contain any subalgebra isomorphic to sl(2; R)
and hence we conclude the only Lie algebra homomorphism from sl(2; R) into u(n) is
the 0 map.

(c) Suppose Π : SL(2; R) → U(dim V) is a unitary representation, that is Π(A)† =
Π(A) for all A ∈ SL(2; R). Using

π(X) :=
d
dt

Π(etX)

∣∣∣∣
t=0

we can pass to the associated Lie algebra representation π : sl(2; R) → u(dim V),
and by complex linearity of π we can pass to the associated representation of the
complexification of sl(2; R)C as πC : sl(2; C) → u(dim V). However, as shown above
the only Lie algebra homomorphism from sl(2; C) into u(dim V) is trivial. Traversing
back up the chain to Π we find that Π must also be trivial, and in order to satisfy
the fact that it is a representation it must send the identity to the identity. Therefore
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Π(A) = idV . Note here we used the fact that SL(2; R) is connected to go to and from
the Lie group and Lie algebra representation. In particular because we need that Π and
π to have “the same” invariant subspaces.

Also, Proposition 4.8 in Hall states “If G is connected and π(X) is skew self-adjoint
for all X ∈ g, then Π is unitary” which is exactly the case we have here. Although in
our case πC is only skew self-adjoint trivially.
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