Lie Groups and Lie Algebras Assignment 1

Name: Nate Stemen (20906566)
Due: Wed, Jan 27, 2020 10:00 PM
Email: nate@stemen.email
Course: PMATH 863

\# 1

Let $G \subset \mathrm{GL}(n ; \mathbb{C})$ and $H \subset \mathrm{GL}(n ; \mathbb{C})$ be matrix Lie groups. Consider the following set of block diagonal matrices.

$$
\widetilde{G}:=\left\{\left.\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right) \in \mathcal{M}_{n+m}(\mathbb{C}) \right\rvert\, A \in G, B \in H\right\}
$$

Prove that this is a matrix Lie group. Then prove that $\widetilde{G} \simeq G \times H$ as groups and topological spaces, where the product topology is put on $G \times H$.

Solution. First we will show this is a matrix Lie group by taking a sequence $\left\{A_{i}\right\}_{i \in \mathbb{N}} \in$ $\widetilde{\mathrm{G}}$. The structure of $\widetilde{\mathrm{G}}$ allows us to understand each term in this sequence as

$$
A_{i}=\left(\begin{array}{cc}
B_{i} & 0 \\
0 & C_{i}
\end{array}\right)
$$

Thus, every sequence $\left\{A_{i}\right\}_{i \in \mathbb{N}} \in \widetilde{G}$ is comprised of two sequences $\left\{B_{i}\right\}_{i \in \mathbb{N}} \in G$ and $\left\{C_{i}\right\}_{i \in \mathbb{N}} \in H$. The fact that G and H are both Lie groups allow us to conclude $\lim _{\widetilde{G}} B_{i}=B \in G$ and $\lim C_{i}=C \in H$, and thus $\lim A_{i}=\left(\begin{array}{cc}B & 0 \\ 0 & C\end{array}\right) \in \widetilde{G}$. Thus we conclude \widetilde{G} is indeed a Lie group.

To show the two groups are isomorphic, take $\phi: \widetilde{G} \rightarrow G \times H$ by

$$
\phi(A)=\phi\left(\left[\begin{array}{ll}
B & 0 \\
0 & C
\end{array}\right]\right) \mapsto(B, C)
$$

First note this is defined on all of \widetilde{G}, and is indeed a bijection by the definition of \widetilde{G}. Now we'll show it's a homomorphism.

$$
\begin{aligned}
& \phi(A B)=\phi\left(\left[\begin{array}{ll}
C & 0 \\
0 & D
\end{array}\right]\left[\begin{array}{ll}
E & 0 \\
0 & F
\end{array}\right]\right)=\phi\left(\left[\begin{array}{cc}
C E & 0 \\
0 & D F
\end{array}\right]\right)=(C E, D F) \\
& \phi(A) \phi(B)=(C, D) \times(E, F):=(C E, D F)
\end{aligned}
$$

Lastly we must show ϕ to be a homeomorphism. First note $\phi^{-1}: G \times H \rightarrow \widetilde{G}$ can be defined as $\phi^{-1}((A, B))=\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]$, and the continuity of both ϕ and ϕ^{-1} follow from the continuity of matrix multiplication.

\# 2

Let $\alpha \in \mathbb{R}$ be irrational.
(a) Prove that the set $\left\{\mathrm{e}^{2 \pi \mathrm{i} n \alpha} \mid n \in \mathbb{Z}\right\}$ is dense in S^{1}.
(b) Define

$$
G=\left\{\left.\left(\begin{array}{cc}
\mathrm{e}^{\mathrm{i} t} & 0 \\
0 & \mathrm{e}^{\mathrm{i} \alpha t}
\end{array}\right) \right\rvert\, t \in \mathbb{R}\right\} .
$$

Prove that \bar{G}, the closure of G in $\mathcal{M}_{2}(\mathbb{C})$, satisfies

$$
\bar{G}=\left\{\left.\left(\begin{array}{cc}
\mathrm{e}^{\mathrm{i} \theta} & 0 \\
0 & \mathrm{e}^{\mathrm{i} \phi}
\end{array}\right) \right\rvert\, \theta, \phi \in \mathbb{R}\right\} .
$$

(c) Is G a matrix Lie group? What about \bar{G}.

Solution. (a) First we will show $A:=\left\{\mathrm{e}^{2 \pi \mathrm{i} n \alpha} \mid n \in \mathbb{Z}\right\}$ is a group under complex number multiplication.

$$
\mathrm{e}^{2 \pi \mathrm{i} n \alpha} \mathrm{e}^{2 \pi \mathrm{i} m \alpha}=\mathrm{e}^{2 \pi \mathrm{i}(n+m) \alpha} \in A
$$

The identity is given by taking $n=0$, and inverses are taking by $-n$ yada yada yada...Also note this set/group has cardinality that is countably infinite, because of the irrationality of α.

Now divide S^{1} into N equally sized bins, as if slicing a pizza. By the pidgeonhole principle, one such slice must contain an infinite number of points. In particular we can find two elements x, y in that such slice so that $\left|x \cdot y^{-1}\right|<\varepsilon_{N}$. We can then use this element $x \cdot y^{-1}$ to generate an ε-net of the unit circle. Because this ε is dependent on N, we can shrink it as small as we want, and hence generate points within any ε of S^{1}. Thus this set is dense in S^{1}.
(b) Let's construct two sequences. First take

$$
g_{n}=\left(\begin{array}{cc}
\mathrm{e}^{\mathrm{i}(\theta+2 \pi n)} & \\
& \mathrm{e}^{\mathrm{i} \theta \alpha} \mathrm{e}^{\mathrm{i} 2 \pi \alpha n}
\end{array}\right)=\left(\begin{array}{ll}
\mathrm{e}^{\mathrm{i} \theta} & \\
& \mathrm{e}^{\mathrm{i} \theta \alpha} \mathrm{e}^{\mathrm{i} 2 \pi \alpha n}
\end{array}\right) .
$$

Now that the subsequence of g_{n} so that the second term converges to 1 . This can always be done by Part (a). Similarly we will take

$$
h_{n}=\left(\begin{array}{ll}
\mathrm{e}^{\mathrm{i}\left(\frac{\phi+2 \pi n}{\alpha}\right)} & \\
& \mathrm{e}^{\mathrm{i} \alpha\left(\frac{\phi+2 \pi n}{\alpha}\right)}
\end{array}\right)=\left(\begin{array}{ll}
\mathrm{e}^{\mathrm{i} \phi / \alpha} \mathrm{e}^{\mathrm{i} \beta 2 \pi n} & \\
& \mathrm{e}^{\mathrm{i} \phi}
\end{array}\right) .
$$

We've used $\beta=1 / \alpha$ (which if α is irrational will still be irrational). Again by Part (a) we can find a subsequence of of h_{n} to converge to $\left(\begin{array}{ll}1 & \\ & \mathrm{e}^{\mathrm{i} \phi}\end{array}\right)$.

By multiplying these two sequences together we get all elements like $\left(\begin{array}{ll}e^{i \theta} \theta & \\ & e^{i \phi}\end{array}\right)$.
(c) G is not a Lie group because it is not relatively closed in $\mathcal{M}_{2}(\mathbb{C})$. That said \bar{G} because first it is a subgroup of $\mathcal{M}_{2}(\mathbb{C})$ and it is relatively closed.

\# 3

Let G be a matrix Lie group. The following problems are not necessarily related.
(a) Suppose G has a dense abelian subgroup, prove that G itself is abelian.
(b) Assume G is connected and let H be a discrete normal subgroup of G. Prove that H is contained in the center $Z(G)$ of G.
(c) Assume G is connected and let U be a neighborhood of the identity $\mathbb{1}$. Prove that every element $A \in G$ can be written as $A=A_{1} A_{2} \cdots A_{n}$ for some $n \in \mathbb{N}$ and $A_{1}, \ldots, A_{n} \in U$.

Solution. (a) Call the dense subgroup H. Take two element $g, h \in G$ which are not in H. The density of H lets us write g and h as limits of elements in H.

$$
\begin{aligned}
g \cdot h & =\lim _{i \rightarrow \infty} g_{i} \cdot \lim _{j \rightarrow \infty} h_{j} \\
& =\lim _{i, j \rightarrow \infty} g_{i} \cdot h_{j} \\
& =\lim _{i, j \rightarrow \infty} h_{j} \cdot g_{i} \\
& =\lim _{j \rightarrow \infty} h_{j} \cdot \lim _{i \rightarrow \infty} g_{i} \\
& =h \cdot g
\end{aligned}
$$

A similar analysis can be done if one element is not in H, and another is.
(b) Since H is normal we know $g h g^{-1} \in H$ for al $g \in G$. In particular this must hold for $g=e_{G}$ the identity in G, and hence $h \in H$. By the discreteness of H we know there is a neighborhood U around h such that $U \cap H=\{h\}$. This fact, combined with the continuity of multiplication in Lie groups allows us to say $g h g^{-1} \in U \cap H=\{h\}$. Thus $g h g^{-1}=h$ and by right multiplying by g we have $g h=h g$. This implies H is contained in the center $Z(G)$ of G.
(c) Here we will make use of the fact that any open and closed subgroup H of a connected Lie group G must be equal $H=G$.

First take U to be the intersection $U \cap U^{-1}$. This is still an open neighborhood of the identity because the inversion map $g \mapsto g^{-1}$ is smooth. Now build the group

$$
H=\bigcup_{n \in \mathbb{N}} U^{n}=\left\{u_{1} \cdot u_{2} \cdots u_{n}: u_{i} \in U \text { and for some } n \in \mathbb{N}\right\} .
$$

Since each U^{n} is open, H must also be open because it is the union of open sets.
To show this set is closed, take and element $b \in \bar{H}$ the closure of H. Since $b U^{-1}$ is open, it must intersect H and thus we can find an $h \in H \cap g U^{-1}$. This means $h=g u^{-1}$ for some $u \in U$, and $h=u_{1} \cdot u_{2} \cdots u_{n}$ for some $u_{i} \in U$. Setting these two representation equal we can say $g=u_{1} \cdot u_{2} \cdots u_{n} \cdot u \in U^{n+1} \subseteq H$. Thus H is closed. Finally using the statement from the beginning of this problem of the solution we conclude that G is generated by U.

\# 4

Prove that $S O(n)$ is connected for all $n \geq 1$.

Solution. First note that $S O(1)=\{[1]\}$ is connected. Revolutionary.
Now for any unit vector $v \in \mathbb{R}^{n}$, take \mathbf{e}_{1} to be the first standard basis vector and pick \mathbf{e}_{2} to be orthogonal to \mathbf{e}_{1} and with the property that $v \in \operatorname{span}\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)$. Complete the basis arbitrarily. The angle between \mathbf{e}_{1} and v can be computed, and we call it ϕ. Our path can be constructed as:

$$
p(t)=\left[\begin{array}{ccc}
\cos \phi t & \sin \phi t & \\
-\sin \phi t & \cos \phi t & \\
& & \mathbb{1}_{n-2}
\end{array}\right]
$$

This is clearly in $\mathrm{SO}(n)$ and is a path that rotates \mathbf{e}_{1} to v.
Since the rotation part of the above matrix is in $\mathrm{SO}(2)$, we can do an orientation preserving change of basis (which will also be in $\mathrm{SO}(2)$) to transform the above path into

$$
\left[\begin{array}{lll}
1 & & \\
& R_{\phi t} & \\
& & \mathbb{1}_{n-3}
\end{array}\right]=\left[\begin{array}{ll}
1 & \\
& A
\end{array}\right] .
$$

Where $A \in \operatorname{SO}(n-1)$. By induction this shows that every element in $\mathrm{SO}(n)$ can be connected to the identity, and hence is connected.

\# 5

An alternative proof of the connectedness of $\mathrm{GL}(n ; \mathbb{C})$.
(a) Let $A, B \in \mathrm{GL}(n ; \mathbb{C})$. Prove that there are only finitely many $\lambda \in \mathbb{C}$ such that $\operatorname{det}(\lambda A+(1-\lambda) B)=0$.
(b) Prove that there is a continuous function $\lambda:[0,1] \rightarrow \mathbb{C}$ with $\lambda(0)=$ $0, \lambda(1)=1$, such that $A(t)=\lambda(t) A+(1-\lambda(t)) B$ lies in $\mathrm{GL}(n ; \mathbb{C})$ for all $t \in[0,1]$. Deduce that $\mathrm{GL}(n ; \mathbb{C})$ is connected.
(c) Were does this argument fail when \mathbb{C} is replaced with \mathbb{R}.

Solution. (a) First note that the determinant is a continuous function because it can be written as a polynomial in the entries of a matrix. This means there exists a neighborhood around B (and A) such that the determinat of $\varepsilon A+(1-\varepsilon) B$ must be approximately the same as the determinant of B (and in particular, nonzero). This fact, together with the determinant being a polynomial allow us to conclude there are only finite number of roots of this function on the line joining A and B.
(b) There always exists a continuous paths connecting any two matrices in $\mathrm{GL}(n ; \mathbb{C})$ because there are an uncountable number of paths, and only a finite number of points to avoid. Clearly this can be done.
(c) This argument fails when dealing with $\mathrm{GL}(n ; \mathbb{R})$ because we cannot "go around" the holes because the determinant maps to \mathbb{R} (a one dimensional space with a hole removed is not connected) instead of \mathbb{C} (a two dimensional space with a hole removed is still connected).

\# 6

Let \mathbb{H} denote the skew field of quaternions.
(a) Let G be the set of unit quaternions. Prove that G is a group.
(b) Write and arbitrary quaternion $q=a+b \mathrm{i}+c \mathrm{j}+d \mathrm{k}$ as $q=z+w \mathrm{j}$, where $z=a+b \mathrm{i}$ and $w=c+d \mathrm{i}$ are viewed as complex numbers. Define $F: \mathbb{H} \rightarrow$ $\mathcal{M}_{2}(\mathbb{C})$ by

$$
F: z+w \mathrm{j} \mapsto\left(\begin{array}{cc}
z & w \\
-\bar{w} & \bar{z}
\end{array}\right)
$$

Prove that F gives a group isomorphism of G onto $\operatorname{SU}(2)$, and that both are homeomorphic to S^{3}.
(c) Explain why G "agrees" with $\operatorname{Sp}(1)=S p(1 ; \mathbb{C}) \cap U(2)$ defined in class.
(d) Exhibit a Lie group isomorphism between $\mathrm{SO}(2)$ and $\mathrm{U}(1)$, and prove that both are homeomorphic to S^{1}.

Solution. (a) The identity is given by $e=1 \in \mathbb{R}$, inverses are $q^{-1}=a-b \mathbf{i}-c \mathrm{j}-d \mathrm{k}$. To show this group is closed under multiplication please accept my computer aided proof:

```
from sympy.algebras.quaternion import Quaternion
from sympy.abc import a, b, c, d, e, f, g, h
q = Quaternion(a, b, c, d)
r = Quaternion(e, f, g, h)
(q * r).norm().expand().collect([a, b, c, d]).simplify()
>>> sqrt((a**2 + b**2 + c**2 + d**2)*(e**2 + f**2 + g**2 + h**2))
```

Now because both q and r are unit quaternions (something I wasn't able to tell sympy), we know $a^{2}+b^{2}+c^{2}+d^{2}=1=e^{2}+f^{2}+g^{2}+h^{2}$. Hence the product also has norm 1.
(b) Let $q=a+b \mathrm{i}+c \mathrm{j}+d \mathrm{k}$ and $r=e+f \mathrm{i}+g \mathrm{j}+h \mathrm{k}$ and note that

$$
\begin{aligned}
q \cdot r=a e & -b f-c g-d h+(a f+b e+c h-d g) \mathrm{i} \\
& +(a g-b h+c e+d f) \mathrm{j}+(a h+b g-c f+d e) \mathrm{k}
\end{aligned}
$$

Then we have the following very fun function.
$F(q \cdot r)=\left(\begin{array}{cc}a e-b f-c g-d h+(a f+b e+c h-d g) \mathrm{i} & a g-b h+c e+d f+(a h+b g-c f+d e) \mathrm{i} \\ -a g+b h-c e-d f+(a h+b g-c f+d e) \mathrm{i} & a e-b f-c g-d h-(a f+b e+c h-d g) \mathrm{i}\end{array}\right)$
Now we can try the same taking the product after.

$$
\begin{aligned}
F(q) \cdot F(r) & =\left(\begin{array}{cc}
a+b \mathrm{i} & c+d \mathrm{i} \\
-c+d \mathrm{i} & a-b \mathrm{i}
\end{array}\right)\left(\begin{array}{cc}
e+f \mathrm{i} & g+h \mathrm{i} \\
-g+h \mathrm{i} & e-f \mathrm{i}
\end{array}\right) \\
& =\left(\begin{array}{cc}
a-b f-c g-d h+(a f+b e+c h-d g) \mathrm{i} & a g-b h+c e+d f+(a h+b g-c f+d e \mathrm{i} \\
-a g+b h-c e-d f+(a h+b g-c f+d e) \mathrm{i} & a e-b f-c g-d h-(a f+b e+c h-d g) \mathrm{i}
\end{array}\right)
\end{aligned}
$$

As you can (hopefully) see, these two are equivalent. Hey I'm not the one who suggested this problem...

Apparently that wasn't enough torture for this problem. To show this is a surjection you can write out the condition $A A^{\dagger}=\mathbb{1}$ for 2×2 complex matrices, along with the
fact that $\operatorname{det} A=1$ to arrive at the conclusion that any matrix in $\mathrm{SU}(2)$ can be written as $\left({ }_{-\bar{w}}^{z} \frac{w}{z}\right)$. This argument can also be made because $A A^{+}=\mathbb{1}$ which means A has orthonormal columns. If the first column is (a, b), and the second must be orthogonal to that. Together with the fact that the determinant of A must be 1 gives us the second column must be $(-b, a)^{\dagger}$.

These are both homeomorphic to S^{3} by sending a unit quaternion $q=a+b \mathrm{i}+c \mathrm{j}+$ $d \mathrm{k}$ to $(a, b, c, d) \in \mathbb{R}^{4} \supset S^{3}$. This is clearly a homeomorphism. I normally wouldn't be so hand wavey ${ }^{1}$, but this problem is way tedious.
(c) We've just shown G to be isomorphic to $\mathrm{SU}(2)$, so clearly they're in $\mathrm{U}(2)$. Now we just need to show they're also in $\operatorname{Sp}(1 ; \mathbb{C})$. I tried showing any element in $\mathrm{SU}(2)$ commutes with $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, but that didn't seem to work. I'm out of ideas, and out of time.
(d) $S O(2)$ is the matrix Lie group of 2×2 rotation matrices, which can always be specified by an angle $\theta \in[0,2 \pi)$. That is any element $A \in S O(2)$ can be written as R_{θ} for some θ as previously stated. With this we define $f: \mathrm{SO}(2) \rightarrow \mathrm{U}(1)$ by

$$
f: R_{\theta} \mapsto \mathrm{e}^{\mathrm{i} \theta}
$$

The periodicity of the complex exponential ensure this function is a bijection. To show it's a homomorphism we use the simple geometric fact that rotations about the origin compose by adding the corresponding angles of rotation. That is $R_{\alpha} \cdot R_{\beta}=R_{\alpha+\beta}$. Thus $f\left(R_{\alpha} R_{\beta}\right)=f\left(R_{\alpha+\beta}\right)=\mathrm{e}^{\mathrm{i}(\alpha+\beta)}$ and $f\left(R_{\alpha}\right) f\left(R_{\beta}\right)=\mathrm{e}^{\mathrm{i} \alpha} \mathrm{e}^{\mathrm{i} \beta}=\mathrm{e}^{\mathrm{i}(\alpha+\beta)}$.

To show $\mathrm{U}(1)$ is homeomorphic to S^{1}, take the map $\mathrm{e}^{\mathrm{i} x} \mapsto(\cos x, \sin x)$. For $\mathrm{SO}(2)$ take $R_{\theta} \mapsto(\cos \theta, \sin \theta)$.

[^0]
\# 7

For $X, Y \in \mathcal{M}_{n}(\mathbb{C})$, define $F_{X}(Y):=\left.\partial_{t}\right|_{t=0} \mathrm{e}^{X+t Y}$.
(a) Prove that $F_{X}: \mathcal{M}_{n}(\mathbb{C}) \rightarrow \mathcal{M}_{n}(\mathbb{C})$ is linear.
(b) Prove that for all $X, Y \in \mathcal{M}_{n}(\mathbb{C})$ with $\|Y\|<1$, there holds

$$
\left\|\mathrm{e}^{X+Y}-\mathrm{e}^{X}-F_{X}(Y)\right\| \leq C\|Y\|^{2} \mathrm{e}^{\|X\|},
$$

where C is some constant independent of X, Y.
(c) Prove that exp : X $\mapsto \mathrm{e}^{X}$ defines a continuously differentiable function from $\mathcal{M}_{n}(\mathbb{C})$ to $\mathcal{M}_{n}(\mathbb{C})$.

Solution. (a)

$$
\begin{aligned}
F_{X}(Y) & =\left.\frac{\partial}{\partial t} \lim _{n \rightarrow \infty}\left[\mathrm{e}^{X / n} \mathrm{e}^{t Y / n}\right]^{n}\right|_{t=0} \\
& =\lim _{n \rightarrow \infty} \sum_{m=1}^{n} \mathrm{e}^{\frac{m}{n} X} \frac{Y}{n} \mathrm{e}^{\frac{n-m}{n} X} \\
& =\left(\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{m=1}^{n} \mathrm{e}^{\frac{m}{n} X} Y \mathrm{e}^{\frac{-m}{n} X}\right) \mathrm{e}^{X} \\
& =\int_{0}^{1} \mathrm{e}^{x X} Y \mathrm{e}^{(1-x) X} \mathrm{~d} x
\end{aligned}
$$

From here it's simple to see F_{X} is linear.
(b)

$$
\begin{aligned}
\mathrm{e}^{X+Y}-\mathrm{e}^{X}-F_{X}(Y)= & \left(\mathbb{1}+X+Y+\sum_{n=2}^{\infty} \frac{(X+Y)^{n}}{n!}\right) \\
& -\left(\mathbb{1}+X+\sum_{n=2}^{\infty} \frac{X^{n}}{n!}\right) \\
& -\left(Y+\left.\frac{\partial}{\partial t} \sum_{n=2}^{\infty} \frac{(X+t Y)^{n}}{n!}\right|_{t=0}\right) \\
= & \sum_{n=2}^{\infty} \frac{1}{n!}\left(X^{n}-(X+Y)^{n}-\left.\frac{\partial}{\partial t}(X+t Y)^{n}\right|_{t=0}\right)
\end{aligned}
$$

Taking the norm of both sides it's clear we can get a factor of $\mathrm{e}^{\|X\|}$. To get the $\|Y\|^{2} \mathrm{I}$ think it comes from the fact that there are never any Y^{n} terms for any n coming from the last F_{X} term. That said I cannot find how to get the two simultaneously. :'(
(c) Remember $\mathcal{M}_{n}(\mathbb{C}) \cong \mathbb{C}^{n^{2}}$. Since we defined e^{X} via a power series, and $\left(X^{m}\right)_{i j}$ is a polynomial in the matrix entries (for all m), surely this function is continuously differentable, and in fact, wouldn't it be infinitely differentiable?

I think this fact can also be seen from the fact that both matrix multiplication and addition are smooth maps, and e^{X} is a composition of smooth maps, and hence smooth. Perhaps this is not always true though because we have ever increasing number of compositions?

\# 8

Prove that for all $X \in \mathcal{M}_{n}(\mathbb{C})$, we have

$$
\lim _{m \rightarrow \infty}\left[\mathbb{1}+\frac{X}{m}\right]^{m}=\mathrm{e}^{X}
$$

Solution. Here we will use the fact that for $\|B\|<1 / 2$ we have

$$
\log (\mathbb{1}+B)=B+\mathcal{O}\left(\|B\|^{2}\right)
$$

Start by choosing an m large enough so that both $\|X / m\|<1 / 2$ and $\|X / m-\mathbb{1}\|<1$ are satisfied. Then by the above identity we have

$$
\log \left(\mathbb{1}+\frac{X}{m}\right)=\frac{X}{m}+\mathcal{O}\left(\frac{\|X\|}{m^{2}}\right)
$$

The second inequality we chose m to satisfy allows us to exponentiate both sides to yield

$$
\mathbb{1}+\frac{X}{m}=\exp \left(\frac{X}{m}+\mathcal{O}\left(\frac{\|X\|}{m^{2}}\right)\right)
$$

and, therefore

$$
\left(\mathbb{1}+\frac{X}{m}\right)^{m}=\exp \left(X+\mathcal{O}\left(\frac{\|X\|}{m}\right)\right)
$$

Taking the limit, and using the continuity of the exponential we find that

$$
\lim _{m \rightarrow \infty}\left(\mathbb{1}+\frac{X}{m}\right)^{m}=\mathrm{e}^{X} .
$$

\# 9

Prove that, even when $X, Y \in \mathcal{M}_{n}(\mathbb{C})$ do not commute, we still have

$$
\left.\frac{\partial}{\partial t} \operatorname{tr}\left(\mathrm{e}^{X+t Y}\right)\right|_{t=0}=\operatorname{tr}\left(\mathrm{e}^{X} Y\right)
$$

Solution. Here we make good use of the Lie product formula.

$$
\begin{aligned}
\left.\frac{\partial}{\partial t} \operatorname{tr}\left(\mathrm{e}^{X+t Y}\right)\right|_{t=0} & =\left.\frac{\partial}{\partial t} \operatorname{tr}\left[\lim _{n \rightarrow \infty}\left(\mathrm{e}^{\mathrm{X} / n} \mathrm{e}^{t Y / n}\right)^{n}\right]\right|_{t=0} \\
& =\left.\operatorname{tr}\left[\lim _{n \rightarrow \infty} n\left(\mathrm{e}^{\mathrm{X} / n} \mathrm{e}^{t Y / n}\right)^{n-1} \mathrm{e}^{X / n} \mathrm{e}^{t Y / n} \frac{Y}{n}\right]\right|_{t=0} \\
& =\left.\operatorname{tr}\left[\lim _{n \rightarrow \infty}\left(\mathrm{e}^{X / n} \mathrm{e}^{t Y / n}\right)^{n} Y\right]\right|_{t=0} \\
& =\left.\operatorname{tr}\left(\mathrm{e}^{\mathrm{X}+t Y} Y\right)\right|_{t=0} \\
& =\operatorname{tr}\left(\mathrm{e}^{\mathrm{X}} Y\right)
\end{aligned}
$$

\# 10
Prove that a compact matrix Lie group has only finitely many connected components.

Solution. Take G to be our compact Lie group. Without loss of generality we will think about G as a closed and bounded subset of \mathbb{R}^{n} for some n. Now suppose G has an infinute number of connected components. Because each component must has an element with an open neighborhood around it, the volume of each component is $\varepsilon>0$. However our closed and bounded region of \mathbb{R}^{n} has finite volume and cannot fit an infinite number of disjoint open balls.

[^0]: ${ }^{1}$ maybe I would

