
Lie Groups and Lie Algebras Assignment 1

Name: Nate Stemen (20906566) Due: Wed, Jan 27, 2020 10:00 PM
Email: nate@stemen.email Course: PMATH 863

# 1

Let G ⊂ GL(n; C) and H ⊂ GL(n; C) be matrix Lie groups. Consider the follow-
ing set of block diagonal matrices.

G̃ :=
{(

A 0
0 B

)
∈ Mn+m(C) | A ∈ G, B ∈ H

}
Prove that this is a matrix Lie group. Then prove that G̃ ≃ G × H as groups and
topological spaces, where the product topology is put on G × H.

Solution. First we will show this is a matrix Lie group by taking a sequence {Ai}i∈N ∈
G̃. The structure of G̃ allows us to understand each term in this sequence as

Ai =

(
Bi 0
0 Ci

)
.

Thus, every sequence {Ai}i∈N ∈ G̃ is comprised of two sequences {Bi}i∈N ∈ G
and {Ci}i∈N ∈ H. The fact that G and H are both Lie groups allow us to conclude
lim Bi = B ∈ G and lim Ci = C ∈ H, and thus lim Ai =

(
B 0
0 C
)
∈ G̃. Thus we conclude

G̃ is indeed a Lie group.
To show the two groups are isomorphic, take ϕ : G̃ → G × H by

ϕ(A) = ϕ

([
B 0
0 C

])
7→ (B, C).

First note this is defined on all of G̃, and is indeed a bijection by the definition of G̃.
Now we’ll show it’s a homomorphism.

ϕ(AB) = ϕ

([
C 0
0 D

][
E 0
0 F

])
= ϕ

([
CE 0
0 DF

])
= (CE, DF)

ϕ(A)ϕ(B) = (C, D)× (E, F) := (CE, DF)

Lastly we must show ϕ to be a homeomorphism. First note ϕ−1 : G × H → G̃ can
be defined as ϕ−1((A, B)) =

[
A 0
0 B
]
, and the continuity of both ϕ and ϕ−1 follow from

the continuity of matrix multiplication.
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# 2

Let α ∈ R be irrational.
(a) Prove that the set

{
e2π inα | n ∈ Z

}
is dense in S1.

(b) Define

G =

{(
eit 0
0 eiαt

)
| t ∈ R

}
.

Prove that G, the closure of G in M2(C), satisfies

G =

{(
eiθ 0
0 eiϕ

)
| θ, ϕ ∈ R

}
.

(c) Is G a matrix Lie group? What about G.

Solution. (a) First we will show A :=
{

e2π inα | n ∈ Z
}

is a group under complex
number multiplication.

e2π inαe2π imα = e2π i(n+m)α ∈ A

The identity is given by taking n = 0, and inverses are taking by −n yada yada
yada. . . Also note this set/group has cardinality that is countably infinite, because of
the irrationality of α.

Now divide S1 into N equally sized bins, as if slicing a pizza. By the pidgeonhole
principle, one such slice must contain an infinite number of points. In particular we
can find two elements x, y in that such slice so that

∣∣x · y−1
∣∣ < εN . We can then use this

element x · y−1 to generate an ε-net of the unit circle. Because this ε is dependent on
N, we can shrink it as small as we want, and hence generate points within any ε of S1.
Thus this set is dense in S1.

(b) Let’s construct two sequences. First take

gn =

(
ei(θ+2πn)

eiθαei2παn

)
=

(
eiθ

eiθαei2παn

)
.

Now that the subsequence of gn so that the second term converges to 1. This can always
be done by Part (a). Similarly we will take

hn =

ei
(

ϕ+2πn
α

)
eiα

(
ϕ+2πn

α

)
 =

(
eiϕ/αeiβ2πn

eiϕ

)
.

We’ve used β = 1/α (which if α is irrational will still be irrational). Again by Part (a)

we can find a subsequence of of hn to converge to
(

1
eiϕ

)
.

By multiplying these two sequences together we get all elements like
(

eiθ

eiϕ

)
.

(c) G is not a Lie group because it is not relatively closed in M2(C). That said G
because first it is a subgroup of M2(C) and it is relatively closed.
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# 3

Let G be a matrix Lie group. The following problems are not necessarily related.
(a) Suppose G has a dense abelian subgroup, prove that G itself is abelian.
(b) Assume G is connected and let H be a discrete normal subgroup of G. Prove

that H is contained in the center Z(G) of G.
(c) Assume G is connected and let U be a neighborhood of the identity 1. Prove

that every element A ∈ G can be written as A = A1A2 · · · An for some
n ∈ N and A1, . . . , An ∈ U.

Solution. (a) Call the dense subgroup H. Take two element g, h ∈ G which are not in
H. The density of H lets us write g and h as limits of elements in H.

g · h = lim
i→∞

gi · lim
j→∞

hj

= lim
i,j→∞

gi · hj

= lim
i,j→∞

hj · gi

= lim
j→∞

hj · lim
i→∞

gi

= h · g

A similar analysis can be done if one element is not in H, and another is.
(b) Since H is normal we know ghg−1 ∈ H for al g ∈ G. In particular this must hold

for g = eG the identity in G, and hence h ∈ H. By the discreteness of H we know there
is a neighborhood U around h such that U ∩ H = {h}. This fact, combined with the
continuity of multiplication in Lie groups allows us to say ghg−1 ∈ U ∩ H = {h}. Thus
ghg−1 = h and by right multiplying by g we have gh = hg. This implies H is contained
in the center Z(G) of G.

(c) Here we will make use of the fact that any open and closed subgroup H of a
connected Lie group G must be equal H = G.

First take U to be the intersection U ∩ U−1. This is still an open neighborhood of
the identity because the inversion map g 7→ g−1 is smooth. Now build the group

H =
⋃

n∈N

Un = {u1 · u2 · · · un : ui ∈ U and for some n ∈ N}.

Since each Un is open, H must also be open because it is the union of open sets.
To show this set is closed, take and element b ∈ H the closure of H. Since bU−1 is

open, it must intersect H and thus we can find an h ∈ H ∩ gU−1. This means h = gu−1

for some u ∈ U, and h = u1 · u2 · · · un for some ui ∈ U. Setting these two representation
equal we can say g = u1 · u2 · · · un · u ∈ Un+1 ⊆ H. Thus H is closed. Finally using
the statement from the beginning of this problem of the solution we conclude that G is
generated by U.
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# 4

Prove that SO(n) is connected for all n ≥ 1.

Solution. First note that SO(1) = {
[
1
]
} is connected. Revolutionary.

Now for any unit vector v ∈ Rn, take e1 to be the first standard basis vector and
pick e2 to be orthogonal to e1 and with the property that v ∈ span(e1, e2). Complete
the basis arbitrarily. The angle between e1 and v can be computed, and we call it ϕ. Our
path can be constructed as:

p(t) =

 cos ϕt sin ϕt
− sin ϕt cos ϕt

1n−2


This is clearly in SO(n) and is a path that rotates e1 to v.

Since the rotation part of the above matrix is in SO(2), we can do an orientation
preserving change of basis (which will also be in SO(2)) to transform the above path
into 1

Rϕt
1n−3

 =

[
1

A

]
.

Where A ∈ SO(n − 1). By induction this shows that every element in SO(n) can be
connected to the identity, and hence is connected.
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# 5

An alternative proof of the connectedness of GL(n; C).
(a) Let A, B ∈ GL(n; C). Prove that there are only finitely many λ ∈ C such

that det(λA + (1 − λ)B) = 0.
(b) Prove that there is a continuous function λ : [0, 1] → C with λ(0) =

0, λ(1) = 1, such that A(t) = λ(t)A + (1 − λ(t))B lies in GL(n; C) for all
t ∈ [0, 1]. Deduce that GL(n; C) is connected.

(c) Were does this argument fail when C is replaced with R.

Solution. (a) First note that the determinant is a continuous function because it can be
written as a polynomial in the entries of a matrix. This means there exists a neighbor-
hood around B (and A) such that the determinat of εA+(1− ε)B must be approximately
the same as the determinant of B (and in particular, nonzero). This fact, together with
the determinant being a polynomial allow us to conclude there are only finite number
of roots of this function on the line joining A and B.

(b) There always exists a continuous paths connecting any two matrices in GL(n; C)
because there are an uncountable number of paths, and only a finite number of points
to avoid. Clearly this can be done.

(c) This argument fails when dealing with GL(n; R) because we cannot “go around”
the holes because the determinant maps to R (a one dimensional space with a hole
removed is not connected) instead of C (a two dimensional space with a hole removed
is still connected).
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# 6

Let H denote the skew field of quaternions.
(a) Let G be the set of unit quaternions. Prove that G is a group.
(b) Write and arbitrary quaternion q = a + bi + cj + dk as q = z + wj, where

z = a + bi and w = c + di are viewed as complex numbers. Define F : H →
M2(C) by

F : z + wj 7→
(

z w
−w z

)
.

Prove that F gives a group isomorphism of G onto SU(2), and that both are
homeomorphic to S3.

(c) Explain why G “agrees” with Sp(1) = Sp(1; C) ∩ U(2) defined in class.
(d) Exhibit a Lie group isomorphism between SO(2) and U(1), and prove that

both are homeomorphic to S1.

Solution. (a) The identity is given by e = 1 ∈ R, inverses are q−1 = a − bi − cj − dk.
To show this group is closed under multiplication please accept my computer aided
proof:
from sympy.algebras.quaternion import Quaternion
from sympy.abc import a, b, c, d, e, f, g, h

q = Quaternion(a, b, c, d)
r = Quaternion(e, f, g, h)

(q * r).norm().expand ().collect([a, b, c, d]).simplify ()
>>> sqrt((a **2 + b** 2 + c **2 + d** 2)*(e**2 + f** 2 + g**2 + h** 2))

Now because both q and r are unit quaternions (something I wasn’t able to tell
sympy), we know a2 + b2 + c2 + d2 = 1 = e2 + f 2 + g2 + h2. Hence the product also has
norm 1.

(b) Let q = a + bi + cj + dk and r = e + f i + gj + hk and note that

q · r = ae − b f − cg − dh + (a f + be + ch − dg)i
+ (ag − bh + ce + d f )j + (ah + bg − c f + de)k

Then we have the following very fun function.

F(q · r) =
(

ae − b f − cg − dh + (a f + be + ch − dg)i ag − bh + ce + d f + (ah + bg − c f + de)i
−ag + bh − ce − d f + (ah + bg − c f + de)i ae − b f − cg − dh − (a f + be + ch − dg)i

)
Now we can try the same taking the product after.

F(q) · F(r) =
(

a + bi c + di
−c + di a − bi

)(
e + f i g + hi
−g + hi e − f i

)
=
(

ae − b f − cg − dh + (a f + be + ch − dg)i ag − bh + ce + d f + (ah + bg − c f + de)i
−ag + bh − ce − d f + (ah + bg − c f + de)i ae − b f − cg − dh − (a f + be + ch − dg)i

)
As you can (hopefully) see, these two are equivalent. Hey I’m not the one who suggested
this problem. . .

Apparently that wasn’t enough torture for this problem. To show this is a surjection
you can write out the condition AA† = 1 for 2 × 2 complex matrices, along with the
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fact that det A = 1 to arrive at the conclusion that any matrix in SU(2) can be written
as ( z w

−w z ). This argument can also be made because AA† = 1 which means A has
orthonormal columns. If the first column is (a, b), and the second must be orthogonal
to that. Together with the fact that the determinant of A must be 1 gives us the second
column must be (−b, a)†.

These are both homeomorphic to S3 by sending a unit quaternion q = a + bi + cj +
dk to (a, b, c, d) ∈ R4 ⊃ S3. This is clearly a homeomorphism. I normally wouldn’t be
so hand wavey1, but this problem is way tedious.

(c) We’ve just shown G to be isomorphic to SU(2), so clearly they’re in U(2). Now
we just need to show they’re also in Sp(1; C). I tried showing any element in SU(2)
commutes with

( 0 1
−1 0

)
, but that didn’t seem to work. I’m out of ideas, and out of time.

(d) SO(2) is the matrix Lie group of 2 × 2 rotation matrices, which can always be
specified by an angle θ ∈ [0, 2π). That is any element A ∈ SO(2) can be written as Rθ

for some θ as previously stated. With this we define f : SO(2) → U(1) by

f : Rθ 7→ eiθ.

The periodicity of the complex exponential ensure this function is a bijection. To show
it’s a homomorphism we use the simple geometric fact that rotations about the origin
compose by adding the corresponding angles of rotation. That is Rα · Rβ = Rα+β. Thus
f (RαRβ) = f (Rα+β) = ei(α+β) and f (Rα) f (Rβ) = eiαeiβ = ei(α+β).

To show U(1) is homeomorphic to S1, take the map eix 7→ (cos x, sin x). For SO(2)
take Rθ 7→ (cos θ, sin θ).

1maybe I would
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# 7

For X, Y ∈ Mn(C), define FX(Y) := ∂t|t=0eX+tY.
(a) Prove that FX : Mn(C) → Mn(C) is linear.
(b) Prove that for all X, Y ∈ Mn(C) with ∥Y∥ < 1, there holds∥∥∥eX+Y − eX − FX(Y)

∥∥∥ ≤ C∥Y∥2e∥X∥,

where C is some constant independent of X, Y.
(c) Prove that exp : X 7→ eX defines a continuously differentiable function

from Mn(C) to Mn(C).

Solution. (a)

FX(Y) =
∂

∂t
lim

n→∞

[
eX/netY/n

]n
∣∣∣∣
t=0

= lim
n→∞

n

∑
m=1

e
m
n X Y

n
e

n−m
n X

=

(
lim

n→∞

1
n

n

∑
m=1

e
m
n XYe

−m
n X

)
eX

=
∫ 1

0
exXYe(1−x)X dx

From here it’s simple to see FX is linear.
(b)

eX+Y − eX − FX(Y) =

(
1 + X + Y +

∞

∑
n=2

(X + Y)n

n!

)

−
(

1 + X +
∞

∑
n=2

Xn

n!

)

−
(

Y +
∂

∂t

∞

∑
n=2

(X + tY)n

n!

∣∣∣∣∣
t=0

)

=
∞

∑
n=2

1
n!

(
Xn − (X + Y)n − ∂

∂t
(X + tY)n

∣∣∣∣
t=0

)
Taking the norm of both sides it’s clear we can get a factor of e∥X∥. To get the ∥Y∥2 I
think it comes from the fact that there are never any Yn terms for any n coming from the
last FX term. That said I cannot find how to get the two simultaneously. :’(

(c) Remember Mn(C) ∼= Cn2
. Since we defined eX via a power series, and (Xm)ij

is a polynomial in the matrix entries (for all m), surely this function is continuously
differentable, and in fact, wouldn’t it be infinitely differentiable?

I think this fact can also be seen from the fact that both matrix multiplication and
addition are smooth maps, and eX is a composition of smooth maps, and hence smooth.
Perhaps this is not always true though because we have ever increasing number of
compositions?

8



Lie Groups and Lie Algebras Assignment 1 Nate Stemen

# 8

Prove that for all X ∈ Mn(C), we have

lim
m→∞

[
1 +

X
m

]m
= eX.

Solution. Here we will use the fact that for ∥B∥ < 1/2 we have

log(1 + B) = B +O
(
∥B∥2

)
.

Start by choosing an m large enough so that both ∥X/m∥ < 1/2 and ∥X/m − 1∥ < 1
are satisfied. Then by the above identity we have

log
(

1 +
X
m

)
=

X
m

+O
(
∥X∥
m2

)
.

The second inequality we chose m to satisfy allows us to exponentiate both sides to
yield

1 +
X
m

= exp
(

X
m

+O
(
∥X∥
m2

))
and, therefore (

1 +
X
m

)m
= exp

(
X +O

(
∥X∥

m

))
.

Taking the limit, and using the continuity of the exponential we find that

lim
m→∞

(
1 +

X
m

)m
= eX.
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# 9

Prove that, even when X, Y ∈ Mn(C) do not commute, we still have

∂

∂t
tr
(

eX+tY
)∣∣∣∣

t=0
= tr

(
eXY

)
.

Solution. Here we make good use of the Lie product formula.

∂

∂t
tr
(

eX+tY
)∣∣∣∣

t=0
=

∂

∂t
tr
[

lim
n→∞

(
eX/netY/n

)n]∣∣∣∣
t=0

= tr
[

lim
n→∞

n
(

eX/netY/n
)n−1

eX/netY/n Y
n

]∣∣∣∣
t=0

= tr
[

lim
n→∞

(
eX/netY/n

)n
Y
]∣∣∣∣

t=0

= tr
(

eX+tYY
)∣∣∣∣

t=0

= tr
(

eXY
)
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# 10

Prove that a compact matrix Lie group has only finitely many connected compo-
nents.

Solution. Take G to be our compact Lie group. Without loss of generality we will
think about G as a closed and bounded subset of Rn for some n. Now suppose G has
an infinute number of connected components. Because each component must has an
element with an open neighborhood around it, the volume of each component is ε > 0.
However our closed and bounded region of Rn has finite volume and cannot fit an
infinite number of disjoint open balls.
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