
Lie Groups and Lie Algebras Assignment 2

Name: Nate Stemen (20906566) Due: Wed, Feb 10, 2020 10:00 PM
Email: nate@stemen.email Course: PMATH 863

# 1

A matrix A is called unipotent if A = 1 + N with N nilpotent. Note that log A
is defined whenever A is unipotent since in that case A − 1 is nilpotent, and the
relevant power series terminates after finitely many terms.

(a) Prove that if A is unipotent, then log A, defined using the power series

log A =
∞

∑
k=1

(−1)k+1 (A − 1)k

k
,

is nilpotent, and that elog A = A.
(b) Prove that if X is nilpotent, then eX is unipotent, and that log

(
eX) = X.

Solution. (a) Given A = 1 + N where N is nilpotent we take the index of N to be n.
First let’s expand the series for log A.

log A =
∞

∑
k=1

(−1)k+1 (A − 1)k

k

=
∞

∑
k=1

(−1)k+1 Nk

k

=
n−1

∑
k=1

(−1)k+1 Nk

k

= N − N2

2
+

N3

3
− · · ·+ (−1)n Nn−1

n − 1

To see how this expression is nilpotent take (log A)n. Using the fact that Aℓ = 0 for
all ℓ ≥ n we can see all terms will vanish, because their degree will be greater than or
equal n.

(b) Again let’s expand the series for exp(X) where the index of X is again n.

eX =
∞

∑
k=0

Xk

k!
= 1 +

n−1

∑
k=1

Xk

k!
= 1 + X +

X2

2
+ · · ·+ Xn−1

(n − 1)!︸ ︷︷ ︸
N

Here we see we can chop off the tail of the exponential and it leaves us with eX = 1+ N
where N is nilpotent by the same argument as above. That is take Nn and the fact that
Nℓ = 0 for all ℓ ≥ n.
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# 2

(a) Classify all the one-dimensional and two-dimensional real abstract Lie
algebras up to isomorphism.

(b) Find at least three non-isomorphic three-dimensional real Lie algebras.
(Start by proving that su(2) is not isomorphic to sl(2; R).)

(c) Prove that su(2) is isomorphic to R3 as real Lie algebras, where the Lie
algebra structure on the latter is given by the cross product.

Solution. (a) The only one dimensional real Lie algebra is (up to isomorphism) the real
line R with addition with Lie bracket given as the commutator (and hence always 0).

There are two real Lie algebras. The Abelian one with [X, Y] = 0 for all X, Y ∈ g
which can be represented as R2 under addition. And second we have a Lie algebra with
commutation relation [X, Y] = X where X and Y are a basis for our vector space. Any
commutation relation [X, Y] = αX + βY can be shown to be equivalent to the previous
commutation relation by a basis transformation, and hence are still isomorphic.

(b) First take R3 with vector addition. This is an Abelian Lie algebra. The second
two will be su(2) and sl(2; R) which we will now prove are not isomorphic.

First recall the commutation relations for the standard basis of sl(2; R).

[X1, X2] = X2 [X1, X3] = −X3 [X2, X3] = 2X1

And for su(2): [
Yi, Yj

]
= ϵijkYk

Now note that sl(2; R) can have multiple two-dimensional closed subspaces, but su(2)
does not. Given an isomorphism must preserve subspaces, there cannot be an isomo-
prhism.

(c) Using the commutation relations above for su(2), and those of R3 with the cross
product:

[x, y] = z [x, z] = −y [y, z] = x

Relabeling our basis x 7→ x1, y 7→ x2, z 7→ x3 we see we can write these commutation
relations as [

xi, xj
]
= ϵijkxk

which are exactly that of su(2). So send xi 7→ Yi for the isomorphism.
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# 3

Define the n-th generalized Heisenberg group by

Hn = {A ∈ GL(n; R) : A − 1 is strictly upper triangular}.

(a) Prove that the Lie algebra of Hn is

hn := {X ∈ gl(n; R) : X is strictly upper triangular}.

(b) Prove that exp : hn → Hn is both injective and surjective.

Solution. (a) First note that Hn is connected for all n. To see this take the following
path p : [0, 1] → Hn that starts at the identity and brings you to any element in Hn:

p(t) :=


1 a12t a13t · · · a1nt

1 a23t a2nt

1
...

. . . an−1,nt
1


Where below the diagonal we have all 0s. Since we now have a path from every element
in Hn to the identity, we can differentiate it at 0 to find the tangent space.

d
dt

p(t)
∣∣∣∣
t=0

=


0 a12 a13 · · · a1n

0 a23 a2n

0
...

. . . an−1,n
0


This shows the tangent space at the identity contains strictly upper triangular matrices.
To see it contains all strictly upper triangular matrices choose aij to be the matrix you
want. Done.

(b) First note that any strictly upper triangular matrix is nilpotent. If A is n × n
and strictly upper triangular, the characteristic polynomial of A is An and by Cayley-
Hamilton we have An = 0. Thus A is nilpotent. This means the exponential of any
element in hn terminates. For X ∈ hn

eX = 1 + X +
X2

2
+ · · ·+ Xn−1

(n − 1)!
.

From here, I think there is some argument to be made how each entry in the matrix is a
polynomial that’s not always zero so something must happen. I’m not entirely sure.
This homework has been so long.
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# 4

Give, with justification, an example showing that the connectedness of G is
necessary for each of the following statements.

(a) If G is a connected matrix Lie group with abelian Lie algebra, then G is
abelian.

(b) If G is a connected matrix Lie group and Φ : G → G is a Lie group homo-
morphism inducing the identity map on g, then Φ is the identity map on
G.

Solution. (a) Let H be any Abelian Lie group and take the product Lie group G =
H × S3 where S3 is the (non-Abelian) symmetric group on 3 elements. Since S3 has 6
elements, the new Lie group G is isomorphic to G6 and hence is not connected. The Lie
algebra of G is exactly that of H’s because of the discrete structure of S3. Because H is
Abelian, it’s Lie algebra is too. Hence we’ve found an Abelian Lie algebra that arrised
from a non-Abelian Lie group.

(b) Take G = O(2) and Φ(A) = det(A)A. This is a homomorphism because
det(AB) = det(A)det(B), and it induces φ ≡ idso(2) because of the fact det

(
eX) =

etr X = e0 = 1.
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# 5

Let G be a connected matrix Lie group with Lie algebra g, and let H be a connected
subgroup. Prove that H is normal if and only if the Lie algebra h of H is an ideal
in g.

Solution. First let h be an ideal in g. By definition we have adg(h) ∈ h for g ∈ g and
h ∈ h. Applying the fact that h is an ideal repeatedly we can conclude adn

g(h) ∈ h
for all n ∈ N. Then, using the fact that h is a subspace, and hence closed we can say
eadg(h) ∈ h. Now we can use identity proved in lecture relating ad and Ad to say
Adeg(h) ∈ h. Using the definition of Ad this means eghe−g ∈ h. Now let’s exponentiate
both sides, and notice when we exponentiate h we get H.

exp
(
eghe−g) = eg︸︷︷︸

G

eh︸︷︷︸
X

e−g︸︷︷︸
G−1

∈ eh

This condition expresses the fact that eg normalizes eh. To go the last step we notice
that G =

⋃
n∈N (eg)n and H =

⋃
n∈N

(
eh
)n.

Now to go the other direction take H to be a normal subgroup of G. This means
h 7→ ghg−1 always lands in H for any g ∈ G. The derivative of this map is Adg : h → h.
In particular for X ∈ g we have

d
dt

AdetX(Y)
∣∣∣∣
t=0

= etXYe−tX
∣∣∣∣
t=0

= adX(Y) ∈ h

This shows h is an ideal.
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# 6

In the notation of the lecture “From Lie algebra homomorphism to Lie group
homomorphism (II)”, prove that the map Φ is indeed a group homomorphism.
(For A, B ∈ G, take paths pA, pB : [0, 1] → G leading from the identity to A, B,
respectively. Define a path going from 1 to AB by setting

p(t) =

{
pA(2t) t ∈ [0, 1/2]

pB(2t − 1)A t ∈ [1/2, 1]

Now choose admissible partitions for pA and pB and try to construct one for p and
compute Φ(BA).)

Solution. Take a0, . . . , an to be “working” partition for pA and b0, . . . bm to be a “work-
ing” partition for pB. Take the following partition for pAB:

a0

2
, . . . ,

an

2
,

1
2
+

b0

2
, . . . ,

1
2
+

bm

2

Now let’s compute Φ(BA).

Φ(BA) := f
(

p(1
2 +

bm
2 )p(1

2 +
bm−1

2 )−1
)
· · · f

(
p( a1

2 )
)

= f
(

pB(bm)A(pB(bm−1)A)−1
)
· · · f (pA(a1))

= f
(

pB(bm)pB(bm−1)
−1
)
· · · f (pA(a1))

= Φ(B)Φ(A)
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# 7

Let X ∈ Mn(C) be a diagonalizable matrix. Prove that adX is a diagonalizable
linear operator on Mn(C). How are the eigenvalues of adX related to those of X?

Solution. We’ll use the following equation to denote the matrix X’s eigenvectors and
eigenvalues.

Xxi = xixi

Similarly we have
X†yi = xiyi

for another set of eigenvectors of X⊺. Because they both form a basis for Cn, the product
basis xiy†

j forms a basis for Mn(C). We can then calculate the effect of adX on each one
of these basis elements.

adX(xiy†
j ) = Xxiy†

j − xiy†
j X

= xixiy†
j − xjxiy†

=
(
xi − xj

)
xiy†

j

This shows that these basis elements xiyj are all eigenvectors of adX, and hence adX
can be diagonalized with respect to it.

7



Lie Groups and Lie Algebras Assignment 2 Nate Stemen

# 8

Compute log
(
eXeY) directly using the power series for the exponential and

logarithm, and verify that the first few terms are given by

log
(

eXeY
)
= X + Y +

1
2
[X, Y] +

1
12

[X, [X, Y]]− 1
12

[Y, [X, Y]] + . . .

Solution. First let’s compute the first few terms of eXeY.

eXeY =

(
1 + X +

X2

2
+

X3

3!
+ · · ·

)(
1 + Y +

Y2

2
+

Y3

3!
+ · · ·

)
= 1 + Y +

Y2

2
+

Y3

3!
+ XY +

XY2

2
+ X +

X2

2
+

X3

3!
+ · · ·

Now we can plug this into the power series for log eXeY and take all the terms of order
3.

log
(

eXeY
)
= Y +

Y2

2
+

Y3

3!
+ XY +

XY2

2
+

X2Y
2

+ X +
X2

2
+

X3

3!

− 1
2

(
Y2 + Y3 + YX + YXY +

YX2

2
+

Y2X
2

+ XY

+
XY2

2
+ X2 + X2Y + X3 + XY2 + XYX

)
= X + Y +

1
2
[X, Y] +

1
12

[X, [X, Y]] +
1
12

[Y, [Y, X]] + · · ·

How lovely.
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# 9

Let G be a matrix Lie group with Lie algebra g.
(a) For a subset K ⊂ G, define the centralizer of K in G to be

ZG(K) = {g ∈ G | gk = kg for all k ∈ K},

and define the centralizer of K in g to be

zg(K) = {X ∈ g : Adk(X) = X for all k ∈ K}.

Prove that ZG(K) is a subgroup of G, that zg(K) a subalgebra of g, and that
zg(K) is the Lie algebra of ZG(K).

(b) For a subset k ⊂ g, define the centralizer of k in G to be

ZG(k) = {g ∈ G | Adg(X) = X for all X ∈ k},

and define the centralizer of K in g to be

zg(k) = {X ∈ g | [X, Y] = 0 for all Y ∈ k}.

Prove that ZG(k) is a subgroup of G, that zg(k) a subalgebra of g, and that
zg(k) is the Lie algebra of ZG(k).

(c) Let H be an analytic subgroup of G, with h its Lie algebra. Prove that
ZG(H) = ZG(h) and zg(H) = zg(h).

Solution. (a) First we will prove ZG(K) is a subgroup of G. Take two elements g, h ∈
ZG(K). Then

(gh)k = g(hk) = g(kh) = (gk)h = (kg)h = k(gh)

so it’s closed under products. The identity is clearly in ZG(K) because it commutes
with everything. Inverses are in this group because we can multiply on both sides of
gk = kg by g−1 on the left and right to obtain kg−1 = g−1k. Hence ZG(K) is a subgroup.

To show zg(K) is a subalgebra, take X, Y ∈ g and we’ll show XY ∈ g.

Adk(XY) = kXYk−1 = kXk−1kYk−1 = Adk(X)Adk(Y) = XY

Now we can show this subspace is closed under brackets.

Adk([X, Y]) = kXYk−1 − kYXk−1 = XY − YX = [X, Y]

So zg(K) is indeed a subalgebra.
To show the zg(K) is the Lie algebra of ZG(K), take X ∈ zg(K). By definition we

have ketXk−1 = etX for all t ∈ R and k ∈ K. Taking the derivative at 0 on both sides we
obtain kXk−1 = X which can be rewritten as kX = Xk.

To go the other way, let Y be a matrix such that etY ∈ ZG(K) for all t. Then we have
etYk = ketY for all k ∈ K. The way we defined zg(K) implies K also contains inverses, so
multiply both sides on the right by k−1, and hence the Lie algebra of ZG(K) is indeed
zg(K).

(b) First we’ll show ZG(k) is a subgroup of G. The identity element is clearly within
the subgroup because it commutes with everything and is it’s own inverse. Inverses
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are within the subgroup because we can multiply both sides of Adg(X) = gXg−1 = X
on right by g and on the left by g−1 to give X = g−1Xg. Now take h = g−1 and it’s easy
to see h is in the group. Finally to show closure under products take g, h ∈ ZG(k). Then
Adgh(X) = ghXh−1g−1 = gXg−1 = X. Hence a subgroup.

Now we’ll show zg(k) is a subalgebra. If X, Y ∈ zg(k), then X and Y commute
with everything, and in particular with each other: [X, Y] = 0. Hence if Z is any
element in the subalgebra we automatically have [[X, Y], Z] = [0, Z] = 0. Hence this is
a subalgebra.

Finally we show there is a Lie correspondence between these two spaces. Let X be a
matrix such that etX ∈ ZG(k) for all t. By definition we have getXg−1 = etX which is
equivalent to getX = etXg for all g ∈ G. If we restrict g to be elements generated by
k ∈ k as etk, then we can write the above equality as etketX = etXetk which implies k and
X commute, and hence in zg(k).

(c) First take g ∈ ZG(H) which implies gh = hg for all h ∈ H. The analyticity of
H implies h = eX1 · · · eXn for some Xi ∈ h, and hence we can rewrite the commuting
condition as

g
(

eX1 · · · eXn
)

g−1 = eX1 · · · eXn

And we can expand the exponentials as power series, and push the g’s inside each
term.

g
(

eX1 · · · eXn
)

g−1 = g

[
n

∏
i=1

(
∞

∑
n=0

Xn
i

n!

)]
g−1

=
n

∏
i=1

g

(
∞

∑
n=0

Xn
i

n!

)
g−1

=
n

∏
i=1

(
∞

∑
n=0

gXn
i g−1

n!

)

=
n

∏
i=1

(
∞

∑
n=0

Xn
i

n!

)

The last equality allows us to imply gXig−1 = Xi for all i by comparing terms. This
shows ZG(H) = ZG(h).

Now for the second equality take X ∈ zg(H). By definition this implies kXk−1 = X
for all k ∈ H. Again by analyticity of H we can write any k as eX1 · · · eXn . Note that
kXk−1 = X holds for all k and in particular k = eXi for all i. So we have eXi Xe−Xi = X
and we can exponentiate and move some terms around to obtain eXieX = eXeXi which
implies [X, Xi] = 0. Since k was arbitrary and so was Xi, this holds for all k and all Xi.
Hence zg(H) = zg(h).
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# 10

(a) Prove that every analytic subgroup of SU(2) is closed. Prove that this is not
true for SU(3).

(b) Let a be a subalgebra of the Lie algebra of the Heisenberg group. Prove that
exp(a) is an analytic subgroup, and is closed.

Solution. (a) Because we’ve proved Sp(1) ∼= SU(2) we’ll work with the unit quater-
nions. The Lie algebra of Sp(1) are the completely imaginary quaternions with no real
component. Now take our analytic subgroup F ⊂ Sp(1), and f it’s Lie algbra.

If dim f = 0 then F = {0} which is clearly closed. If dim f = 1, then there is an
imaginary quaternion a such that ek = {cos θ + a sin θ : 0 ≤ θ < 2π}, and hence is
closed. Now when dim f = 2 we cannot have a subalgebra, and hence there is no
analytic subgroup. To see this recall x1x2 = −x2x2

1 if {x1, x2} is our basis for f. Hence
the commutator [x1, x2] = 2x1x2 is perpendicular to the basis, and hence the basis does
not span the space. Finally if dim f = 3, then k = Sp(1) which is closed.

To see this is not the case for SU(3) take the following subalgebra of su(3) where α
is irrational.

a :=


iφ 0 0

0 iαφ 0
0 0 −iφ(1 + α)

 : φ ∈ R


This is exactly the irrational rotations of a torus embedded into su(3). It’s left as an
exercise to the reader to verify this has the requisite properties.

(b) First note that for any two elements in the Lie algebra h the second order
commutators vanish. Hence the Baker-Campbell-Hausdorff formula allows us to write

etXetY = etX+tY+t2[X,Y]

Because a is a subspace of h it is closed under scalar multiplication and addition, and
also closed under the Lie bracket. This allows us to conclude tX + tY + t2[X, Y] ∈ a,
and hence ea is a subgroup of the Heisenberg group. To prove analyticity we already
have a is a subalgebra of h so we only need to show every element of ea can be written
as ∏ eXi , but that’s obvious since we’re starting with the Lie algebra.

To see ea we’ll examine what happens for each possible dimension of a. First note
that for a general element A in h we have the following exponential

etA = 1 + tA +
t2

2
A2 =

1 ta tb + t2

2 ac
0 1 tc
0 0 1

. (1)

If dim a = 1, then we have control over (say) b and the other two are fixed at 0.
Whenever we do this it’s clear from eq. (1) that ea is closed. A similar analysis can be
done for dim a = 2, and for dim a = 3 we have the entire Heisenberg algebra.

1Because the multiplication of two imaginary quaternions is just like the cross product.
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