Lie Groups and Lie Algebras Assignment 3

Name: Nate Stemen (20906566)
Due: Wed, Feb 24, 2020 10:00 PM
Email: nate@stemen.email

\# 1

Let G be a matrix Lie group and (Π, V) a representation.
(a) Prove that the representation is irreducible if and only if for all $v \in V \backslash\{0\}$ we have

$$
\operatorname{span}_{\mathbb{F}}\{\Pi(A) v: A \in G\}=V
$$

where $\mathbb{F}=\mathbb{C}$ or \mathbb{R} according to whether the representation is complex or real.
(b) Prove that the standard representations of $\mathrm{SO}(n), \mathrm{SU}(n), \mathrm{SL}(n ; \mathbb{C})$ are irreducible.

Solution. I'll use the notation $\mathbb{F}[G v]$ to denote $\operatorname{span}_{\mathbb{F}}\{\Pi(A) v: A \in G\}$ which is reminiscent of the notation of a group ring.
(a) \Longrightarrow Take (Π, V) to be irreducible, and suppose $\mathbb{F}[G v] \neq V$. Then there exists a subspace $W \subseteq V$ not hit by any $\Pi(A) v$ for all $A \in G$. Thus W^{\perp} is an invariant subspace, and (Π, V) is reducible. By contradiction we're done.
\Longleftarrow Take $\mathbb{F}[G v]=V$ for all non-zero v and suppose (Π, V) has an irrep $\left(\left.\Pi\right|_{W}, W\right)$. Then for $w \in W$, then by irreducibility we have $G w \subseteq W$ and hence $\mathbb{F}[G w] \subseteq W$. Thus we've found a $v \in V$ such that $\mathbb{F}[G v] \neq V$ which is a contradiction, and hence (Π, V) must be irreducible.
(b) By (a) if $\mathrm{SO}(n), \mathrm{SU}(n), \mathrm{SL}(n$; C) were reducible, there would be a vector subspace such that Gv never "hits". Without loss of generality we can take v to be a basis element of \mathbb{R}^{n} or \mathbb{C}^{n}. Since $\mathrm{SO}(n)$ contains all (orientation preserving) change of bases, it surely contains contains rotating \mathbf{e}_{i} into \mathbf{e}_{j} for all i and j. This argument should apply to $\mathrm{SU}(n)$ as well.

To see this is true for $\operatorname{SL}(n ; \mathbb{C})$ note that $\operatorname{SU}(n)$ and $\operatorname{SL}(n ; \mathbb{C})$ have the same dimension $\left(n^{2}-1\right)$. This fact, together with $\mathrm{SU}(n) \subset \mathrm{SL}(n ; \mathbb{C})$ and the argument above show the standard representation on $\operatorname{SL}(n ; \mathbb{C})$ is irreducible.

\# 2

For a smooth function f on \mathbb{R}^{n} we define $\Delta f:=\frac{\partial^{2} f}{\partial x_{1}^{2}}+\cdots+\frac{\partial^{2} f}{\partial x_{n}^{2}}$. Prove that for all $A \in \mathrm{O}(n)$ we have $\triangle(f(A x))=(\triangle f)(A x)$.

Solution. We're going to do this by components, so let's recall what it means for A to be orthogonal in components.

$$
\left[A A^{\top}\right]_{i j}=\sum_{k=1}^{n} A_{i k}\left[A^{\top}\right]_{k j}=\sum_{k=1}^{n} A_{i k} A_{j k}=\operatorname{col}(i, A) \cdot \operatorname{col}(j, A)=\delta_{i j}
$$

Here $\operatorname{col}(i, A)$ denotes the i th column of A.

$$
\begin{aligned}
\frac{\partial}{\partial x_{i}} f(A x) & =f^{(i)}(A x) \frac{\partial}{\partial x_{i}} A x \\
& =f^{(i)}(A x) \operatorname{col}(i, A) \\
\frac{\partial^{2}}{\partial x_{i}^{2}} f(A x) & =f^{(i i)}(A x) \operatorname{col}(i, A) \frac{\partial}{\partial x_{i}} A x \\
& =f^{(i i)}(A x) \underbrace{\operatorname{col}(i, A) \cdot \operatorname{col}(i, A)}_{1} \\
& =f^{(i i)}(A x)
\end{aligned}
$$

From this we conclude $(\triangle f)(A x)=\triangle(f(A x))$.

\# 3

Consider the standard representation of $\mathrm{SO}(2)$ on \mathbb{R}^{2}. Prove that the second statement of Schur's lemma fails. That is, there exists an intertwining map $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which is not a multiple of the identity.

Solution. Recall the standard representation of $\mathrm{SO}(2)$ is the function $\lambda: \mathrm{SO}(2) \rightarrow$ $\mathrm{GL}(2 ; \mathbb{R})$ defined by $\lambda(A) \mathbf{x}:=A \mathbf{x}$ for $\mathbf{x} \in \mathbb{R}^{2}$. Now our goal is to find a function $\psi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $\lambda \circ \psi=\psi \circ \lambda$. Thankfull, 2-dimensional rotations commute, and hence we can pick any $R \in S O(2)$ to define $\psi_{R}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ as $\psi_{R}(\mathbf{x})=R \mathbf{x}$.

Hence we have

$$
\lambda(A) \psi_{R}(\mathbf{x})=\lambda(A) R \mathbf{x}=A R \mathbf{x}=R A \mathbf{x}=\psi_{R}(\lambda(A) \mathbf{x})
$$

\# 4

View the Heisenberg group as sitting in $\mathrm{GL}(3 ; \mathbb{C})$ and consider the standard representation on \mathbb{C}^{3}. Determine all invariant subspaces. Is this representation completely reducible?

Solution. Let H denote the Heisenberg group and let's run through a computation for the standard representation $\rho: H \rightarrow \mathrm{GL}(3 ; \mathbb{C})$.

$$
\begin{aligned}
\rho(h) \mathbf{x} & =h \mathbf{x} \\
& =\left(\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \\
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{c}
x+a y+b z \\
y+c z \\
z
\end{array}\right)
\end{aligned}
$$

Since this must hold for all $a, b, c \in \mathbb{R}$ we see z and y must be zero. Hence the only invariant subspace is the x-axis.

\# 5

Let $V_{n}^{\prime}=\operatorname{span}_{\mathrm{C}}\left\{z^{k}: k=0, \ldots, n,\right\}$ be the set of polynomials in one complex variable of degree at most n. Define an action of $S U(2)$ on V_{n}^{\prime} by letting

$$
[\Pi(A) f](z)=(-b z+a)^{n} f\left(\frac{\bar{a} z+\bar{b}}{-b z+a}\right) \text {, for } A=\left(\begin{array}{cc}
a & -\bar{b} \\
b & \bar{a}
\end{array}\right) .
$$

(a) Prove that $\Pi(A)$ does map V_{n}^{\prime} to itself for all $A \in \operatorname{SU}(2)$, and that $\left(\Pi, V_{n}^{\prime}\right)$ is indeed a representation of $\mathrm{SU}(2)$.
(b) Prove that V_{n}^{\prime} is isomorphic to $V_{n}\left(\mathbb{C}^{2}\right)$ as a representation of $\mathrm{SU}(2)$.

Solution. (a)

$$
\begin{aligned}
{[\Pi(A) \cdot f](z) } & =(-b z+a)^{n} \sum_{m=0}^{n} \alpha_{m}\left(\frac{\bar{a} z+\bar{b}}{-b z+a}\right)^{m} \\
& =\sum_{m=0}^{n} \alpha_{m}(\bar{a} z+\bar{b})^{m}(-b z+a)^{n-m} \in V_{n}^{\prime}
\end{aligned}
$$

Now let $A B=\left(\begin{array}{cc}a & -\bar{b} \\ b & \bar{a}\end{array}\right)\left(\begin{array}{cc}c & -\bar{d} \\ d & \bar{c}\end{array}\right)=\left(\begin{array}{ll}a c-\bar{b} d & -a \bar{d}-\bar{b} \bar{c} \\ b c+\bar{a} d & -b \bar{d}+\overline{a c}\end{array}\right)$ and we'll go through a very tedious calculation.

Upon second thought I only have a finite amount of time to work on this and I think I'll learn more from other parts.
(b) Take the following intertwining map $\psi: V_{n}\left(\mathbb{C}^{2}\right) \rightarrow V_{n}^{\prime}$ defined by

$$
\sum_{m=0}^{n} \alpha_{m} z_{1}^{m} z_{2}^{n-m} \longmapsto \psi \sum_{m=0}^{n} \alpha_{m} z_{1}^{m} .
$$

In short, we're simply dropping the second complex variable z_{2}. Now we'll show it's actually an intertwining map. Recall we have $\left(\Pi_{n}, V_{n}\left(\mathbb{C}^{2}\right)\right)$ as defined in lecture and $\left(\Pi, V_{n}^{\prime}\right)$ as defined above.

$$
\begin{aligned}
{\left[\Pi_{n}(A) \cdot g\right]\binom{z_{1}}{z_{2}} } & =g\left(A^{-1}\binom{z_{1}}{z_{2}}\right)=g\binom{\bar{a} z_{1}+\bar{b} z_{2}}{-b z_{1}+a z_{2}} \\
& =\sum_{m=0}^{n} \alpha_{m}\left(\bar{a} z_{1}+\bar{b} z_{2}\right)^{m}\left(-b z_{1}+a z_{2}\right)^{n-m} \\
& =\sum_{m, k, \ell=0}^{n, m, n-m} \alpha_{m}\binom{m}{k}\binom{n-m}{\ell} \bar{a}^{k}(-b)^{\ell} b^{m-k} a^{n-m-\ell} z_{1}^{k+\ell} z_{2}^{n-k-\ell}
\end{aligned}
$$

And now applying out intertwining map we get

$$
\psi\left(\left[\Pi_{n}(A) \cdot g\right]\binom{z_{1}}{z_{2}}\right)=\sum_{m, k, \ell=0}^{n, m, n-m} \alpha_{m}\binom{m}{k}\binom{n-m}{\ell} \bar{a}^{k}(-b)^{\ell^{-}} \bar{b}^{m-k} a^{n-m-\ell} z_{1}^{k+\ell}
$$

Now let's compute $\Pi(A) \circ \psi$.

$$
\begin{aligned}
\psi\left(g\left(z_{1}\right)\right) & =\sum_{m=0}^{n} \alpha_{m} z_{1}^{m} \\
\Pi(A)\left(\psi\left(g\left(z_{1}\right)\right)\right) & =\sum_{m=0}^{n} \alpha_{m}\left(\bar{a} z_{1}+\bar{b}\right)^{m}\left(-b z_{1}+a\right)^{n-m} \\
& =\sum_{m, k, \ell=0}^{n, m, n-m} \alpha_{m}\binom{m}{k}\binom{n-m}{\ell} \bar{a}^{k}(-b)^{\ell} \bar{b}^{m-k} a^{n-m-\ell} z_{1}^{k+\ell}
\end{aligned}
$$

This is exactly what we got before, so we conclude $\Pi(A) \circ \psi=\psi \circ \Pi_{n}(A)$.
To conclude ψ is a bijection we use the fact that $f \in V_{n}^{\prime}$ is completely characterized by it's coefficients α_{i}, and this map preserves the number of available coeffiecients. idk how to argue this, but it's pretty obvious in my opinion this is a bijection.

\# 6

Some applications of Schur's lemma. Let V be a complex representation of a compact matrix Lie group G.
(a) Suppose V is equipped with a G-invariant inner product ($\cdot, \cdot)$. Let V_{1} and V_{2} be irreducible subrepresentations which are non-isomorphic. Prove that $V_{1} \perp V_{2}$ with respect to ($\left.\cdot, \cdot\right)$.
(b) Prove that, up to multiplication by a positive real scalar, there is a unique G-invariant inner product on V.

Solution. (a) Suppose $V_{1} \not \perp V_{2}$. Then there exists a non-zero vector $v \in V_{1} \cap V_{2}=$: W. By the irreducibilty of V_{1} and V_{2} we know $G v \in V_{1}$ and $G v \in V_{2}$, so $G v \in W$, and $G W \subseteq W$. Hence W is a subrepresentation contradicting the fact that V_{1} and V_{2} are irreducible. Thus $V_{1} \perp V_{2}$.

I understand now just because $V_{1} \not \perp V_{2}$ does not imply there is a non-zero vector in their intersection. To recover the proof I think we might be able to argue that because G is compact, it's representation is similar to a unitary one where all subrepresentations are orthogonal.
(b) Let $\langle-,-\rangle$ and $(-,-)$ be two inner products on V. Define the two following maps $\rho_{\langle,\rangle}: V \rightarrow V^{*}$ and $\rho_{(,)}: V \rightarrow V^{*}$ (where V^{*} is the dual space of V) as

$$
\begin{aligned}
& \rho_{\langle,\rangle}(v):=\langle v,-\rangle \\
& \rho_{(,)}(v):=(v,-)
\end{aligned}
$$

Also take the dual representation Π^{*} as

$$
\Pi^{*}(g)\langle v,-\rangle=\left\langle v, \Pi(g)^{\dagger}-\right\rangle
$$

We'll now show both ρ are intertwining maps:

$$
\begin{aligned}
\left(\Pi^{*}(g) \circ \rho\right)(v) & =\Pi^{*}(g)(\rho(v)) \\
& =\Pi^{*}(g)([v,-]) \\
& =\left[v, \Pi(g)^{+}-\right] \\
(\rho \circ \Pi(g))(v) & =\rho(\Pi(g)(v)) \\
& =[\Pi(g) v,-] \\
& =\left[v, \Pi(g)^{+}-\right]
\end{aligned}
$$

Where I'm using $[-,-]$ to denote either of our two inner products. Now by Schur's lemma $\rho_{\langle,\rangle}=\lambda \rho_{(,)}$. To show λ must be real and positive, remember that inner products are positive definite, and so $\underbrace{\langle v, v\rangle}_{\in \mathbb{R} \geq 0}=\lambda \underbrace{(v, v)}_{\in R \geq 0}$. Hence $\lambda \geq 0$.

\# 7

This problem concerns the irreducible representations of $\mathrm{U}(1)$.
(a) For $k \in \mathbb{Z}$, define an action of $\mathrm{U}(1)$ on \mathbb{C} by letting $\Pi_{k}(g) z=g^{k} z$. Prove that this defines a representation of $\mathrm{U}(1)$.
(b) Prove that every homomorphism $\Pi: \mathrm{U}(1) \rightarrow \mathrm{U}(1)$ has the form $\Pi(g)=g^{k}$ for some $k \in \mathbb{Z}$.
(c) Prove that every irreducible representation of $\mathrm{U}(1)$ is isomorphic to $\left(\Pi_{k}, \mathbb{C}\right)$ for some $k \in \mathbb{Z}$.

Solution. (a) First, the fact that Π_{k} is a group homomorphism:

$$
\Pi_{k}\left(g_{1} g_{2}\right)=\left(g_{1} g_{2}\right)^{k}=g_{1}^{k} g_{2}^{k}=\Pi_{k}\left(g_{1}\right) \Pi_{k}\left(g_{2}\right)
$$

Now, to show Π_{k} is continuous let's look at it's kernel. Indeed it's not hard to see $\operatorname{ker}\left(\Pi_{k}\right)=\left\{\mathrm{e}^{\mathrm{i} 2 \pi n}: n \in \mathbb{N}\right\}$. This is a closed subgroup of $\mathrm{U}(1)$, so Π_{k} is continuous.
(b) Suppose $\Pi(g)=g^{\alpha}$ for $\alpha \in \mathbb{R}$. Anything outside of \mathbb{R} might not maintain closure of $\mathrm{U}(1)$ so it's enough to restrict ourselves to \mathbb{R}. Write $\alpha=n+d$ where $n \in \mathbb{Z}$ and $d \in[0,1)$. We can then rewrite $\Pi(g)=g^{n} g^{d}$. Unfortunately we cannot continuously define fractional, and irrational powers of $\mathrm{e}^{\mathrm{i} \theta}$ for all θ continuosly. This leaves us with $\Pi(g)=g^{n}$.
(c) Let $(\tilde{\Pi}, V)$ be an irreducible representation of $U(1)$. The fact that $U(1)$ is commutative implies $\mathrm{GL}(V)$ must be as well:

$$
\tilde{\Pi}(a) \tilde{\Pi}(b)=\tilde{\Pi}(a b)=\tilde{\Pi}(b a)=\tilde{\Pi}(b) \tilde{\Pi}(a)
$$

The only commutative general linear groups are $\mathrm{GL}(1 ; \mathbb{R})$ and $\mathrm{GL}(1 ; \mathbb{C})$ so V must be one of these. If our representation is into $\mathrm{GL}(1 ; \mathbb{R})$ then it must be of the trivial representation.

If $V=\mathrm{GL}(1 ; \mathbb{C})=\left(\mathbb{C}_{\neq 0}, *\right)$, then every $\tilde{\Pi}\left(\mathrm{e}^{\mathrm{i} \theta} \mathrm{e}^{\mathrm{i} \varphi}\right)=\tilde{\Pi}\left(\mathrm{e}^{\mathrm{i} \theta}\right) \tilde{\Pi}\left(\mathrm{e}^{\mathrm{i} \varphi}\right)$ because $\tilde{\Pi}$ is a group homomorphism. This means $\left.\tilde{\Pi}\right|_{U(1)}$ must also be a group homomorphism, and by (b) it must be of the form Π_{k}.

\# 8

(a) Prove that $\operatorname{dim}_{\mathbb{C}} \mathcal{H}_{m}\left(\mathbb{R}^{3}\right)=2 m+1$. (For $f \in V_{m}\left(\mathbb{R}^{3}\right)$, we may write

$$
f(x)=\sum_{k=0}^{m} \frac{x_{1}^{k}}{k!} f_{k}\left(x_{2}, x_{3}\right)
$$

where f_{k} is a homogeneous degree $m-k$ polynomial in x_{2}, x_{3}. Now use the condition $\Delta f=0$ to prove that f is completely determined by f_{0} and f_{1}.)
(b) For $\theta \in \mathbb{R}$, define

$$
R_{\theta}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right)
$$

and consider the subgroup $T=\left\{R_{\theta}\right\}_{\theta \in \mathbb{R}}$ of O (3). Prove that

$$
\mathcal{H}_{T}=\left\{f \in \mathcal{H}_{m}\left(\mathbb{R}^{3}\right): R_{\theta} \cdot f=f \text { for all } \theta \in \mathbb{R}\right\}
$$

is one-dimensional.
(c) Suppose W is an invariant subspace of $\mathcal{H}_{m}\left(\mathbb{R}^{3}\right)$ with respect to the $\mathrm{O}(3)$ representation. Prove that W contains an element of \mathcal{H}_{T}. (Start by proving that there exists $f \in W$ with $f(1,0,0) \neq 0$, and then consider a suitable integral over $\theta \in[0,2 \pi]$.)
(d) Prove that $\mathcal{H}_{m}\left(\mathbb{R}^{3}\right)$ is an irreducible representation of $\mathrm{O}(3)$.

Solution. (a) We'll start by showing $f \in V_{m}\left(\mathbb{R}^{3}\right)$ can be written as in the hint. Let $d=\operatorname{dim} V_{m}\left(\mathbb{R}^{3}\right)$.

$$
\begin{array}{rlr}
f(x, y, z) & =\sum_{i=0}^{d} \alpha_{i} x^{a_{i}} y^{b_{i}} z^{c_{i}} & a_{i}+b_{i}+c_{i}=m \\
& =\sum_{i=0}^{d} \frac{x^{a_{i}}}{i!} \alpha_{i}!!y^{b_{i}} z^{c_{i}} & \\
& =\sum_{a \in\left\{a_{i}\right\}} \frac{x^{a}}{a!} f_{a}(y, z) & f_{a_{i}}(y, z):=\alpha_{i}!!y^{b_{i}} z^{c_{i}} \\
& =\sum_{k=0}^{m} \frac{x^{k}}{k!} f_{k}(y, z) & \text { relabeling and } x \text { has } m \text { distinct powers }
\end{array}
$$

Now we'll calculate $\triangle f$.

$$
\begin{aligned}
\Delta f & =\sum_{k=2}^{m} \frac{x^{k-2}}{(k-2)!} f_{k}(y, z)+\sum_{k=0}^{m} \frac{x^{k}}{k!}\left(f_{k}^{(y y)}+f_{k}^{(z z)}\right) \\
& =\sum_{k=0}^{m-2} \frac{x^{k}}{k!}\left[f_{k+2}(y, z)+f_{k}^{(y y)}+f_{k}^{(z z)}\right]+\frac{x^{m}}{m!}\left(f_{0}^{(y y)}+f_{0}^{(z z)}\right)+\frac{x^{m-1}}{(m-1)!}\left(f_{1}^{(y y)}+f_{1}^{(z z)}\right) \\
& =\sum_{k=0}^{m-2} \frac{x^{k}}{k!}\left[f_{k+2}(y, z)+f_{k}^{(y y)}+f_{k}^{(z z)}\right]
\end{aligned}
$$

Where the last equality holds because $f_{0}^{(a a)}=0$ for $a=y, z$ and similarly for $f_{1}^{(a a)}$.
Now in order for this equation to be identically 0 for all x, y, z we must have the bracketed term equal to 0 . Taking $k=0$ and $k=1$ we have

$$
\begin{aligned}
& f_{2}(y, z)+f_{0}^{(y y)}+f_{0}^{(z z)}=0 \\
& f_{3}(y, z)+f_{1}^{(y y)}+f_{1}^{(z z)}=0
\end{aligned}
$$

Hence we can "build" all f_{i} from f_{0} and f_{1} recursively. This means for an arbitrary $f \in \mathcal{H}_{m}\left(\mathbb{R}^{3}\right)$ we have to choose a degree m harmonic homogeneous polynomial and a degree $m-1$ harmonic homogeneous polynomial. Choosing the first requires $m+1$ numbers, and the second m, so together we have dimension $2 m+1$.
(b) First take $\theta=\pi$. Then

$$
\left(R_{-\pi}\right) \mathbf{x}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
x \\
-y \\
-z
\end{array}\right)
$$

So our solutions must be invariant under $y \mapsto-y$ and $z \mapsto-z$. This means only one of f_{0} or f_{1} can be non-zero based on the parity of m. This means our $f_{R} \in \mathcal{H}_{T}$ look like

$$
f_{R}=f_{0}(y, z) \quad \text { or } \quad f_{R}=x f_{1}(y, z)
$$

Now using the fact that f_{R} is invariant under all θ we should theoretically be able to show there is only one free parameter, but I cannot today.
(c) (d)

The action considered in Problem \#8 also allows us to view $\mathcal{H}_{m}\left(\mathbb{R}^{3}\right)$ as a representation of $\mathrm{SO}(3)$. Does the proof outlined in Problem \#8 show that this representation is irreducible?

Solution. Yes.
\# 10
By Problem \#2, the action $(A \cdot f)(x)=f\left(A^{-1} x\right)$ gives rise to representations of $\mathrm{O}(2)$ and $\mathrm{SO}(2)$ on $\mathcal{H}_{m}\left(\mathbb{R}^{2}\right)$.
(a) Prove that $\mathcal{H}_{m}\left(\mathbb{R}^{2}\right)$ is irreducible as a representation of $\mathrm{O}(2)$.
(b) Prove that $\mathcal{H}_{m}\left(\mathbb{R}^{2}\right)$ is not irreducible as a representation of $\mathrm{SO}(2)$ for $m \geq 2$.

Solution. (a)
(b)

