
Lie Groups and Lie Algebras Assignment 3

Name: Nate Stemen (20906566) Due: Wed, Feb 24, 2020 10:00 PM
Email: nate@stemen.email Course: PMATH 863

# 1

Let G be a matrix Lie group and (Π, V) a representation.
(a) Prove that the representation is irreducible if and only if for all v ∈ V \ {0}

we have
spanF {Π(A)v : A ∈ G} = V,

where F = C or R according to whether the representation is complex or
real.

(b) Prove that the standard representations of SO(n), SU(n), SL(n; C) are irre-
ducible.

Solution. I’ll use the notation F[Gv] to denote spanF {Π(A)v : A ∈ G} which is remi-
niscent of the notation of a group ring.

(a) =⇒ Take (Π, V) to be irreducible, and suppose F[Gv] ̸= V. Then there exists a
subspace W ⊆ V not hit by any Π(A)v for all A ∈ G. Thus W⊥ is an invariant subspace,
and (Π, V) is reducible. By contradiction we’re done.
⇐= Take F[Gv] = V for all non-zero v and suppose (Π, V) has an irrep (Π|W , W).

Then for w ∈ W, then by irreducibility we have Gw ⊆ W and hence F[Gw] ⊆ W. Thus
we’ve found a v ∈ V such that F[Gv] ̸= V which is a contradiction, and hence (Π, V)
must be irreducible.

(b) By (a) if SO(n), SU(n), SL(n; C) were reducible, there would be a vector subspace
such that Gv never “hits”. Without loss of generality we can take v to be a basis element
of Rn or Cn. Since SO(n) contains all (orientation preserving) change of bases, it surely
contains contains rotating ei into ej for all i and j. This argument should apply to SU(n)
as well.

To see this is true for SL(n; C) note that SU(n) and SL(n; C) have the same dimen-
sion (n2 − 1). This fact, together with SU(n) ⊂ SL(n; C) and the argument above show
the standard representation on SL(n; C) is irreducible.
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# 2

For a smooth function f on Rn we define △ f := ∂2 f
∂x2

1
+ · · ·+ ∂2 f

∂x2
n
. Prove that for

all A ∈ O(n) we have △( f (Ax)) = (△ f )(Ax).

Solution. We’re going to do this by components, so let’s recall what it means for A to
be orthogonal in components.

[AA⊺]ij =
n

∑
k=1

Aik[A⊺]kj =
n

∑
k=1

Aik Ajk = col(i, A) · col(j, A) = δij

Here col(i, A) denotes the ith column of A.

∂

∂xi
f (Ax) = f (i)(Ax)

∂

∂xi
Ax

= f (i)(Ax) col(i, A)

∂2

∂x2
i

f (Ax) = f (ii)(Ax) col(i, A)
∂

∂xi
Ax

= f (ii)(Ax) col(i, A) · col(i, A)︸ ︷︷ ︸
1

= f (ii)(Ax)

From this we conclude (△ f )(Ax) = △( f (Ax)).
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# 3

Consider the standard representation of SO(2) on R2. Prove that the second
statement of Schur’s lemma fails. That is, there exists an intertwining map
R2 → R2 which is not a multiple of the identity.

Solution. Recall the standard representation of SO(2) is the function λ : SO(2) →
GL(2; R) defined by λ(A)x := Ax for x ∈ R2. Now our goal is to find a function
ψ : R2 → R2 such that λ ◦ ψ = ψ ◦ λ. Thankfull, 2-dimensional rotations commute,
and hence we can pick any R ∈ SO(2) to define ψR : R2 → R2 as ψR(x) = Rx.

Hence we have

λ(A)ψR(x) = λ(A)Rx = ARx = RAx = ψR(λ(A)x).
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# 4

View the Heisenberg group as sitting in GL(3; C) and consider the standard
representation on C3. Determine all invariant subspaces. Is this representation
completely reducible?

Solution. Let H denote the Heisenberg group and let’s run through a computation for
the standard representation ρ : H → GL(3; C).

ρ(h)x = hx

=

1 a b
0 1 c
0 0 1

x
y
z


x

y
z

 =

x + ay + bz
y + cz

z


Since this must hold for all a, b, c ∈ R we see z and y must be zero. Hence the only
invariant subspace is the x-axis.
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# 5

Let V′
n = spanC

{
zk : k = 0, . . . , n,

}
be the set of polynomials in one complex

variable of degree at most n. Define an action of SU(2) on V′
n by letting

[Π(A) f ](z) = (−bz + a)n f

(
az + b
−bz + a

)
, for A =

(
a −b
b a

)
.

(a) Prove that Π(A) does map V′
n to itself for all A ∈ SU(2), and that (Π, V′

n) is
indeed a representation of SU(2).

(b) Prove that V′
n is isomorphic to Vn(C2) as a representation of SU(2).

Solution. (a)

[Π(A) · f ] (z) = (−bz + a)n
n

∑
m=0

αm

(
az + b
−bz + a

)m

=
n

∑
m=0

αm

(
az + b

)m
(−bz + a)n−m ∈ V′

n

Now let AB =

(
a −b
b a

)(
c −d
d c

)
=

(
ac − bd −ad − bc
bc + ad −bd + ac

)
and we’ll go through a very

tedious calculation.
Upon second thought I only have a finite amount of time to work on this and I think

I’ll learn more from other parts.
(b) Take the following intertwining map ψ : Vn(C2) → V′

n defined by

n

∑
m=0

αmzm
1 zn−m

2
ψ7−−−−→

n

∑
m=0

αmzm
1 .

In short, we’re simply dropping the second complex variable z2. Now we’ll show it’s
actually an intertwining map. Recall we have (Πn, Vn(C2)) as defined in lecture and
(Π, V′

n) as defined above.

[Πn(A) · g]
( z1

z2

)
= g

(
A−1( z1

z2

))
= g

(
az1+bz2
−bz1+az2

)
=

n

∑
m=0

αm

(
az1 + bz2

)m
(−bz1 + az2)

n−m

=
n,m,n−m

∑
m,k,ℓ=0

αm

(
m
k

)(
n − m

ℓ

)
ak(−b)ℓb

m−k
an−m−ℓzk+ℓ

1 zn−k−ℓ
2

And now applying out intertwining map we get

ψ
(
[Πn(A) · g]

( z1
z2

))
=

n,m,n−m

∑
m,k,ℓ=0

αm

(
m
k

)(
n − m

ℓ

)
ak(−b)ℓb

m−k
an−m−ℓzk+ℓ

1
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Now let’s compute Π(A) ◦ ψ.

ψ
(

g
( z1

z2

))
=

n

∑
m=0

αmzm
1

Π(A)(ψ(g
( z1

z2

)
)) =

n

∑
m=0

αm

(
az1 + b

)m
(−bz1 + a)n−m

=
n,m,n−m

∑
m,k,ℓ=0

αm

(
m
k

)(
n − m

ℓ

)
ak(−b)ℓb

m−k
an−m−ℓzk+ℓ

1

This is exactly what we got before, so we conclude Π(A) ◦ ψ = ψ ◦ Πn(A).
To conclude ψ is a bijection we use the fact that f ∈ V′

n is completely characterized
by it’s coefficients αi, and this map preserves the number of available coeffiecients. idk
how to argue this, but it’s pretty obvious in my opinion this is a bijection.
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# 6

Some applications of Schur’s lemma. Let V be a complex representation of a
compact matrix Lie group G.

(a) Suppose V is equipped with a G-invariant inner product ( · , · ). Let V1 and
V2 be irreducible subrepresentations which are non-isomorphic. Prove that
V1 ⊥ V2 with respect to ( · , · ).

(b) Prove that, up to multiplication by a positive real scalar, there is a unique
G-invariant inner product on V.

Solution. (a) Suppose V1 ̸⊥ V2. Then there exists a non-zero vector v ∈ V1 ∩ V2 =: W.
By the irreducibilty of V1 and V2 we know Gv ∈ V1 and Gv ∈ V2, so Gv ∈ W, and
GW ⊆ W. Hence W is a subrepresentation contradicting the fact that V1 and V2 are
irreducible. Thus V1 ⊥ V2.

I understand now just because V1 ̸⊥ V2 does not imply there is a non-zero vector in
their intersection. To recover the proof I think we might be able to argue that because G
is compact, it’s representation is similar to a unitary one where all subrepresentations
are orthogonal.

(b) Let ⟨−,−⟩ and (−,−) be two inner products on V. Define the two following
maps ρ⟨,⟩ : V → V∗ and ρ(,) : V → V∗ (where V∗ is the dual space of V) as

ρ⟨,⟩(v) := ⟨v,−⟩
ρ(,)(v) := (v,−)

Also take the dual representation Π∗ as

Π∗(g)⟨v,−⟩ = ⟨v, Π(g)†−⟩

We’ll now show both ρ are intertwining maps:

(Π∗(g) ◦ ρ)(v) = Π∗(g)(ρ(v))
= Π∗(g)([v,−])

= [v, Π(g)†−]

(ρ ◦ Π(g))(v) = ρ(Π(g)(v))
= [Π(g)v,−]

= [v, Π(g)†−]

Where I’m using [−,−] to denote either of our two inner products. Now by Schur’s
lemma ρ⟨,⟩ = λρ(,). To show λ must be real and positive, remember that inner products
are positive definite, and so ⟨v, v⟩︸ ︷︷ ︸

∈R≥0

= λ (v, v)︸ ︷︷ ︸
∈R≥0

. Hence λ ≥ 0.
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# 7

This problem concerns the irreducible representations of U(1).
(a) For k ∈ Z, define an action of U(1) on C by letting Πk(g)z = gkz. Prove

that this defines a representation of U(1).
(b) Prove that every homomorphism Π : U(1) → U(1) has the form Π(g) = gk

for some k ∈ Z.
(c) Prove that every irreducible representation of U(1) is isomorphic to (Πk, C)

for some k ∈ Z.

Solution. (a) First, the fact that Πk is a group homomorphism:

Πk(g1g2) = (g1g2)
k = gk

1gk
2 = Πk(g1)Πk(g2)

Now, to show Πk is continuous let’s look at it’s kernel. Indeed it’s not hard to see
ker(Πk) = {ei2πn : n ∈ N}. This is a closed subgroup of U(1), so Πk is continuous.

(b) Suppose Π(g) = gα for α ∈ R. Anything outside of R might not maintain closure
of U(1) so it’s enough to restrict ourselves to R. Write α = n + d where n ∈ Z and
d ∈ [0, 1). We can then rewrite Π(g) = gngd. Unfortunately we cannot continuously
define fractional, and irrational powers of eiθ for all θ continuosly. This leaves us with
Π(g) = gn.

(c) Let (Π̃, V) be an irreducible representation of U(1). The fact that U(1) is commu-
tative implies GL(V) must be as well:

Π̃(a)Π̃(b) = Π̃(ab) = Π̃(ba) = Π̃(b)Π̃(a)

The only commutative general linear groups are GL(1; R) and GL(1; C) so V must
be one of these. If our representation is into GL(1; R) then it must be of the trivial
representation.

If V = GL(1; C) = (C ̸=0, ∗), then every Π̃(eiθeiφ) = Π̃(eiθ)Π̃(eiφ) because Π̃ is a
group homomorphism. This means Π̃|U(1) must also be a group homomorphism, and
by (b) it must be of the form Πk.
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# 8

(a) Prove that dimC Hm(R3) = 2m + 1. (For f ∈ Vm(R3), we may write

f (x) =
m

∑
k=0

xk
1

k!
fk(x2, x3),

where fk is a homogeneous degree m − k polynomial in x2, x3. Now use the
condition △ f = 0 to prove that f is completely determined by f0 and f1.)

(b) For θ ∈ R, define

Rθ =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

,

and consider the subgroup T = {Rθ}θ∈R of O(3). Prove that

HT =
{

f ∈ Hm(R
3) : Rθ · f = f for all θ ∈ R

}
is one-dimensional.

(c) Suppose W is an invariant subspace of Hm(R3) with respect to the O(3)
representation. Prove that W contains an element of HT. (Start by proving
that there exists f ∈ W with f (1, 0, 0) ̸= 0, and then consider a suitable integral
over θ ∈ [0, 2π].)

(d) Prove that Hm(R3) is an irreducible representation of O(3).

Solution. (a) We’ll start by showing f ∈ Vm(R3) can be written as in the hint. Let
d = dim Vm(R3).

f (x, y, z) =
d

∑
i=0

αixai ybi zci ai + bi + ci = m

=
d

∑
i=0

xai

i!
αii!ybi zci

= ∑
a∈{ai}

xa

a!
fa(y, z) fai(y, z) := αii! ybi zci

=
m

∑
k=0

xk

k!
fk(y, z) relabeling and x has m distinct powers

Now we’ll calculate △ f .

△ f =
m

∑
k=2

xk−2

(k − 2)!
fk(y, z) +

m

∑
k=0

xk

k!

(
f (yy)
k + f (zz)

k

)
=

m−2

∑
k=0

xk

k!

[
fk+2(y, z) + f (yy)

k + f (zz)
k

]
+

xm

m!

(
f (yy)
0 + f (zz)

0

)
+

xm−1

(m − 1)!

(
f (yy)
1 + f (zz)

1

)
=

m−2

∑
k=0

xk

k!

[
fk+2(y, z) + f (yy)

k + f (zz)
k

]
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Where the last equality holds because f (aa)
0 = 0 for a = y, z and similarly for f (aa)

1 .
Now in order for this equation to be identically 0 for all x, y, z we must have the

bracketed term equal to 0. Taking k = 0 and k = 1 we have

f2(y, z) + f (yy)
0 + f (zz)

0 = 0

f3(y, z) + f (yy)
1 + f (zz)

1 = 0

Hence we can “build” all fi from f0 and f1 recursively. This means for an arbitrary
f ∈ Hm(R3) we have to choose a degree m harmonic homogeneous polynomial and a
degree m − 1 harmonic homogeneous polynomial. Choosing the first requires m + 1
numbers, and the second m, so together we have dimension 2m + 1.

(b) First take θ = π. Then

(R−π)x =

1 0 0
0 −1 0
0 0 −1

x
y
z

 =

 x
−y
−z


So our solutions must be invariant under y 7→ −y and z 7→ −z. This means only one of
f0 or f1 can be non-zero based on the parity of m. This means our fR ∈ HT look like

fR = f0(y, z) or fR = x f1(y, z).

Now using the fact that fR is invariant under all θ we should theoretically be able to
show there is only one free parameter, but I cannot today.

(c) (d)
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# 9

The action considered in Problem #8 also allows us to view Hm(R3) as a rep-
resentation of SO(3). Does the proof outlined in Problem #8 show that this
representation is irreducible?

Solution. Yes.
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# 10

By Problem #2, the action (A · f )(x) = f (A−1x) gives rise to representations of
O(2) and SO(2) on Hm(R2).

(a) Prove that Hm(R2) is irreducible as a representation of O(2).
(b) Prove that Hm(R2) is not irreducible as a representation of SO(2) for m ≥ 2.

Solution. (a)
(b)
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