Lie Groups and Lie Algebras Assignment 3

Name: Nate Stemen (20906566) Due: Wed, Feb 24, 2020 10:00 PM
Email: nate@stemen.email Course: PMATH 863
#1

Let G be a matrix Lie group and (I, V) a representation.
(a) Prove that the representation is irreducible if and only if forallv € V' \ {0}
we have
spang {II(A)v: A€ G} =V,

where F = C or R according to whether the representation is complex or
real.

(b) Prove that the standard representations of SO(#n), SU(n), SL(n; C) are irre-
ducible.

Solution. I'll use the notation F[Gv] to denote spang {I1(A)v : A € G} which is remi-
niscent of the notation of a group ring.

(a) '=> Take (I1, V) to be irreducible, and suppose F[Gv] # V. Then there exists a
subspace W C V not hit by any IT(A)v for all A € G. Thus W+ is an invariant subspace,
and (I1, V) is reducible. By contradiction we’re done.

<= Take F[Gv] = V for all non-zero v and suppose (I1, V) has an irrep (IT|y, W).
Then for w € W, then by irreducibility we have Gw C W and hence F[Gw] C W. Thus
we've found a v € V such that F[Gv] # V which is a contradiction, and hence (I1, V)
must be irreducible.

(b) By (a) if SO(n), SU(n), SL(n; C) were reducible, there would be a vector subspace
such that Gv never “hits”. Without loss of generality we can take v to be a basis element
of R" or C". Since SO(n) contains all (orientation preserving) change of bases, it surely
contains contains rotating e; into e; for all i and j. This argument should apply to SU(n)
as well.

To see this is true for SL(n; C) note that SU(n) and SL(#; C) have the same dimen-
sion (n? — 1). This fact, together with SU(n) C SL(n; C) and the argument above show
the standard representation on SL(#; C) is irreducible.
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# 2
For a smooth function f on R" we define Af :== 55 + - -
all A € O(n) we have A(f(Ax)) = (Af)(Ax).

92 f
+ 2 Prove that for

Solution. We’re going to do this by components, so let’s recall what it means for A to
be orthogonal in components.

n
AAT 2 Alk = 2 AikAjk = COl(i,A) : COl(j,A) = 51]
k=1

Here col(i, A) denotes the ith column of A.

ail (Ax) = f(i)(Ax)aixiAx
= fD(Ax) col(i, A)

82 .. . 0
axzf(Ax) f(”)(Ax) COI(Z’A)S_xiAx
_ f(ii)(Ax) Sol(i,A) -col(i, A)

-~

1

= f(Ax)

From this we conclude (Af)(Ax) = A(f(Ax)).
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# 3

Consider the standard representation of SO(2) on R?. Prove that the second
statement of Schur’s lemma fails. That is, there exists an intertwining map
R? — R? which is not a multiple of the identity.

Solution. Recall the standard representation of SO(2) is the function A : SO(2) —
GL(2; R) defined by A(A)x := Ax for x € R%. Now our goal is to find a function
¥ : R? — R? such that A o ¢y = ¢ o A. Thankfull, 2-dimensional rotations commute,
and hence we can pick any R € SO(2) to define ¢g : R> — R? as g (x) = Rx.

Hence we have

A(A)Pr(x) = A(A)Rx = ARx = RAXx = Pr(A(A)x).
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# 4
View the Heisenberg group as sitting in GL(3; C) and consider the standard

representation on C3. Determine all invariant subspaces. Is this representation
completely reducible?

Solution. Let H denote the Heisenberg group and let’s run through a computation for
the standard representation p : H — GL(3; C).

p(h)x = hx
1 a b\ [x
=101 c]ly
00 1) \z
x x+ay+ bz
vy = Yy+ez
z z

Since this must hold for all 4,b,c € R we see z and y must be zero. Hence the only
invariant subspace is the x-axis.
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#5

Let V) = spanc {zF:k=0,...,n,} be the set of polynomials in one complex
variable of degree at most n. Define an action of SU(2) on V,, by letting

[H(A)f](z):(—bz+a)”f<_ﬁg+b ) for A = (Z ‘_E).

Z+a a

(a) Prove that IT(A) does map V,, to itself for all A € SU(2), and that (I1, V})) is
indeed a representation of SU(2).
(b) Prove that V;, is isomorphic to V;,(C?) as a representation of SU(2).

Solution. (a)

TI(A) - f] (z) = (—bz +a) Z - (_EZZ++ba>

n —
=Y an (Eer b) (=bz+a)" " eV,

m=0

Now let AB = (Z _ﬁb) (2 —Ed) = (ZE ;ZZ :Zj n bc) and we’ll go through a very

tedious calculation.

Upon second thought I only have a finite amount of time to work on this and I think
I'll learn more from other parts.

(b) Take the following intertwining map ¥ : V,,(C?) — V, defined by

n n

m._n—m l/] m
Y a2z —— Y apzf.
=0 m=0

In short, we're simply dropping the second complex variable z;. Now we’ll show it’s
actually an intertwining map. Recall we have (I1,, V,,(C?)) as defined in lecture and
(I1, V) as defined above.

Mh(4)-2l(2) = 8(47(2) = (5%

n m

Z Ky <a21 - bzz> (—bzy +az)"™"
m=0
nm,

:'”fmm n—m Ek(_b)ebmknmekMgké
-\ k 1
m,k,0=0

And now applying out intertwining map we get

P([IL.(A)-g](3)) = nmifm( ) ( ’ >5k(_b)€Emkanmlelc+£

m, k=0
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Now let’s compute IT(A) o .

() = L st

m=0
A (P(E(2)) = - an(am +D)" (bmr 4.0~
SR e

This is exactly what we got before, so we conclude IT1(A) o p = ¢ o IT,(A).

To conclude ¢ is a bijection we use the fact that f € V;, is completely characterized
by it’s coefficients &;, and this map preserves the number of available coeffiecients. idk
how to argue this, but it’s pretty obvious in my opinion this is a bijection.
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# 6
Some applications of Schur’s lemma. Let V be a complex representation of a
compact matrix Lie group G.
(a) Suppose V is equipped with a G-invariant inner product ( -, - ). Let V; and
V, be irreducible subrepresentations which are non-isomorphic. Prove that
V1 L V, with respectto (-, - ).
(b) Prove that, up to multiplication by a positive real scalar, there is a unique
G-invariant inner product on V.

Solution. (a) Suppose Vi £ V,. Then there exists a non-zero vectorv € V1 NV, = W.
By the irreducibilty of V; and V, we know Gv € V; and Gv € V,,s0 Gv € W, and
GW C W. Hence W is a subrepresentation contradicting the fact that V; and V, are
irreducible. Thus V; L V5.

I understand now just because V; [ V, does not imply there is a non-zero vector in
their intersection. To recover the proof I think we might be able to argue that because G
is compact, it’s representation is similar to a unitary one where all subrepresentations
are orthogonal.

(b) Let (—, —) and (—, —) be two inner products on V. Define the two following
maps p(y: V — V*and p(): V — V* (where V" is the dual space of V) as

Also take the dual representation IT* as

IT*(g){v, =) = (v,11(g)" )

We’ll now show both p are intertwining maps:

=1 (g) ([0, —))
= [v,11(g)"]
(poTI(g))(v) = p(11(g)(v))
= [11(g)o, -]
= [0,11(g)" -]
Where I'm using [—, —] to denote either of our two inner products. Now by Schur’s
lemma p )y = Ap(). To show A must be real and positive, remember that inner products
are positive definite, and so (v,v) = A (v,v). Hence A > 0.
N~ N =
ERZO GRZO
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#7
This problem concerns the irreducible representations of U(1).

(a) For k € Z, define an action of U(1) on C by letting IT;(g)z = ¢*z. Prove
that this defines a representation of U(1).

(b) Prove that every homomorphism IT: U(1) — U(1) has the form I1(g) = g*
for some k € Z.

(c) Prove that every irreducible representation of U(1) is isomorphic to (IT, C)
for some k € Z.

Solution. (a) First, the fact that I'T; is a group homomorphism:

(8182) = (8182)" = ¢¥gh = I (g1) 1Tk (g2)

Now, to show I is continuous let’s look at it’s kernel. Indeed it’s not hard to see
ker(IT;) = {e'?™ : n € N}. This is a closed subgroup of U(1), so Iy is continuous.

(b) SupposeI1(g) = g* for « € R. Anything outside of R might not maintain closure
of U(1) so it’s enough to restrict ourselves to R. Write « = n + d where n € Z and
d € [0,1). We can then rewrite I1(g) = ¢"¢". Unfortunately we cannot continuously
define fractional, and irrational powers of e? for all 6 continuosly. This leaves us with
I1(g) = g".

(c) Let (I, V) be an irreducible representation of U(1). The fact that U(1) is commu-
tative implies GL(V') must be as well:

[1(a)I1(b) = [1(ab) = [1(ba) = [1(b)I1(a)

The only commutative general linear groups are GL(1; R) and GL(1; C) so V must
be one of these. If our representation is into GL(1; R) then it must be of the trivial
representation.

If V= GL(1; C) = (Co, *), then every I1(el%!?) = I1(e!?)I1(e!?) because ITis a
group homomorphism. This means fI|U(1) must also be a group homomorphism, and
by (b) it must be of the form IT.
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# 8
(a) Prove that dimc H,, (R3) = 2m + 1. (For f € V,,(R®), we may write
m xllc
flx) =Y ka(le X3),
k=0

where fi is a homogeneous degree m — k polynomial in x,x3. Now use the
condition A f = 0 to prove that f is completely determined by fo and f;.)

(b) For 0 € R, define
1 0 0
Rpy=10 cosf —sinf |,
0 sinf cos#

and consider the subgroup T = {Rg},.g of O(3). Prove that
Hr = {f € Hm(R3) : Ry - f = fforalld € IR}

is one-dimensional.

(c) Suppose W is an invariant subspace of H,,(IR®) with respect to the O(3)
representation. Prove that W contains an element of Hr. (Start by proving
that there exists f € W with f(1,0,0) # 0, and then consider a suitable integral
over 6 € [0,271].)

(d) Prove that H,,(R3) is an irreducible representation of O(3).

Solution. (a) We'll start by showing f € V,(IR®) can be written as in the hint. Let
d = dim V;,(IR3).

d
floy,z) = Y axybiz ai+bi+c=m
i=0
d x4
= Z — N 1|y
i—0 i!
x? . b
= L v fuly,2) = it gzt
ac{a;}
m ok
= Z T fr (y, z) relabeling and x has m distinct powers

Now we’ll calculate Af.

ANf = X vy) zz
f_;(k 2) fk Y,z +Zk' (fk +fk >
n2 xk m—1
ZH%MM%Hﬁmﬂﬁh%wwuﬁ%+é?mﬁmﬂﬁ>
m—2 .k
= %[karZ(]/r 2)+ £ + fk(zz)}
=0
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Where the last equality holds because féM) = 0 for a = y, z and similarly for fl(aa).
Now in order for this equation to be identically O for all x, y, z we must have the
bracketed term equal to 0. Taking k = 0 and k = 1 we have

folyz) + f + (57 =0

folw,2) + £+ {7 =0
Hence we can “build” all f; from fy and f; recursively. This means for an arbitrary
f € Hm(R3) we have to choose a degree m harmonic homogeneous polynomial and a
degree m — 1 harmonic homogeneous polynomial. Choosing the first requires m + 1

numbers, and the second m, so together we have dimension 2m + 1.
(b) First take 8 = 7r. Then

1 0 O X X
i3 400 (3
0O 0 -1 z —z

So our solutions must be invariant under y — —y and z — —z. This means only one of
fo or f1 can be non-zero based on the parity of m. This means our fr € Hr look like

fr = foly,2) or fr = xf1(y,2).

Now using the fact that fr is invariant under all 8 we should theoretically be able to
show there is only one free parameter, but I cannot today.

(0) (d)

10
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#9

The action considered in Problem #8 also allows us to view H,,(IR?) as a rep-
resentation of SO(3). Does the proof outlined in Problem #8 show that this
representation is irreducible?

Solution. Yes.

11
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4 10

By Problem #2, the action (A - f)(x) = f(A~'x) gives rise to representations of
O(2) and SO(2) on H,,(IR?).

(a) Prove that H,,(IR?) is irreducible as a representation of O(2).

(b) Prove that #H,,(IR?) is not irreducible as a representation of SO(2) for m > 2.

Solution. (a)

(b)

12
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