
Lie Groups and Lie Algebras Assignment 4

Name: Nate Stemen (20906566) Due: Wed, Mar 10, 2020 10:00 PM
Email: nate@stemen.email Course: PMATH 863

# 1

Let (σ, V) be a complex representation of sl(2; C). Define H, X, Y as in p.96 of
Hall. Let v ∈ V \ {0} be an eigenvector of σ(H) such that σ(X)v = 0, and define
vk = σ(Y)kv for k ≥ 0. Prove that

σ(X)vk = k(λ − k + 1)vk−1, for all k ≥ 1.

Solution. Let σ(H)v = λv and recall the following commutation relations:

[X, Y] = H [H, Y] = −2Y

Now let’s calculate σ(X)vk.

σ(X)vk = σ(X)σ(Y)kv
= [σ(X)σ(Y)]σ(Y)k−1v

= [σ(H) + σ(Y)σ(X)]σ(Y)k−1v σ(H) = σ([X, Y]) = σ(X)σ(Y)− σ(Y)σ(X)...
= kσ(H)σ(Y)k−1v + σ(Y)k σ(X)v︸ ︷︷ ︸

0

= k[σ(Y)σ(H)− 2σ(Y)]σ(Y)k−2v −2σ(Y) = σ([H, Y]) = σ(H)σ(Y)− σ(Y)σ(H)...
= k

[
σ(Y)k−1 σ(H)v︸ ︷︷ ︸

λv

−2(k − 1) σ(Y)k−1v︸ ︷︷ ︸
vk−1

]
= k(λ − 2k + 2)vk−1

Not sure if the question is incorrect or if I missed something. I cannot see it though.
I’ve looked through for at least 2 hours, so if you see my error please point it out.
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# 2

Let (Π1, V1), (Π2, V2) two representations of a connected matrix Lie group. Prove
that (Π1, V1) is isomorphic to (Π2, V2) if and only if (π1, V1) is isomorphic to
(π2, V2), where (π1, V1), (π2, V) denote the associated Lie algebra representations.

Solution. Suppose (Π1, V2) ∼= (Π2, V2) by an intertwining map ϕ. Then we have a
commutative diagram.

V1 V1

V1 V2

ϕ

Π1(g) Π2(g)

ϕ

Since this holds for all g ∈ G it will certainly hold for all etX with X ∈ g.[
ϕ ◦ Π1(etX)

]
v =

[
Π2(etX) ◦ ϕ

]
v[

ϕ ◦ etπ1(X)
]
v =

[
etπ2(X) ◦ ϕ

]
v

ϕ
[
etπ1(X)v

]
= etπ2(X)[ϕ(v)]

ϕ
[
1v + tπ1(X)v +O(t2)

]
=
[
1 + tπ2(X) +O(t2)

]
ϕ(v)

ϕ(v) + tϕ(π1(X)v) +O(t2) = ϕ(v) + tπ2(X)ϕ(v) +O(t2)

ϕ(π1(X)v) = π2(X)ϕ(v)

Where the last equality is obtained by cancelling ϕ(v) on both sides, dividing by t and
taking the limit t → 0. This implies ϕ ◦ π1 = π2 ◦ ϕ.

To go the other way start with ψ ◦ π1(X) = π2(X) ◦ ψ. Any element in a connected
Lie group can be written as g = eX1eX2 · · · eXn for some n and some Xi’s. Now we’ll
show ψ ◦ Π1(g) = Π2(g) ◦ ψ.

ψ
[
Π1(eX1eX2 · · · eXn)

]
= ψ

[
Π1(eX1) · · ·Π1(eXn)

]
= ψ

[
eπ1(X1) · · · eπ1(Xn)

]
= eπ2(X1) ◦ ψ ◦ eπ1(X2) ◦ · · · ◦ eπ1(Xn)

= eπ2(X1) ◦ · · · ◦ eπ2(Xn) ◦ ψ

= Π2(eX1 · · · eXn) ◦ ψ
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# 3

Let V be a real or complex representation of a matrix Lie group or Lie algebra.
(a) Prove that the dual representation V∗ is irreducible if and only if V is

irreducible.
(b) Prove that (V∗)∗ is isomorphic to V as a representation.

(Given a subspace W of V, its annihilator is the subspace of V∗ given by

W0 = {l ∈ V∗ : l(w) = 0 for all w ∈ W}.

Recall that (W0)0 under the canonical vector space isomorphism V ≡ (V∗)∗, and
thus W 7→ W0 establishes a one-to-one correspondence between subspaces of V
and those of V∗. Look up annihilators if the preceding paragraph is not a review for
you.)

Solution. (a) Suppose V∗ is an irreducible representation, and let W ⊆ V be an invari-
ant subspace. We can then show W0 is an invariant subspace of V∗ by the following.

(Π∗(g)l)(w) = l(Π(g−1)w) = l(w̃) = 0

Where we used the fact that G · W ⊆ W and therefore there must exist a w̃ such that
w̃ = Π(g−1)w. Hence W0 is an invariant subspace of V∗. Since V∗ is an irrep, W0 =

{
0
}

or W0 = V∗.
If W0 = V∗ then every linear functional annhilates every vector of W which is only

possible when W = {0} the zero vector.
If W0 =

{
0
}

then we want to show W = V. We’ll do this by contrapositive. So
suppose W ̸= V is a subspace, and take {ei}n

i=1 is a basis for V with W spanned by
{ei}m

i=1 with m < n. Now define the following linear functional

f (v) = f

(
n

∑
i=1

αiei

)
=

n

∑
i=m+1

αi

This is clearly C-linear and homogeneuous, so indeed an element of the dual space.
Thus we’ve found a linear functional such that f |W ≡ 0. This implies W0 ̸=

{
0
}

. Thus,
by contrapositive, W = V.

We’ve just shown V∗ irrep =⇒ V irrep , and taking the dual of both sides yields

V∗∗ irrep =⇒ V∗ irrep. Now using the natural isomorphism of vector spaces V∗∗ ∼= V

we have V irrep =⇒ V∗ irrep .

(b) Take the following commutative diagram:

V V∗∗

V V∗∗

ψ

Π(g) Π∗∗(g)

ψ

where ψ : V → V∗∗ is defined as ψ(v)(ϕ) := evv(ϕ) = ϕ(v). To show this commutes
we’ll have to show Π∗∗(g) ◦ ψ = ψ ◦ Π(g). First the left hand side where v ∈ V and
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f ∈ V∗. [
(Π∗∗(g) ◦ ψ)(v)

]
( f ) =

[
Π∗∗(g)(ψ(v))

]
( f )

=
[
Π∗∗(g)(evv)

]
( f )

= evv(Π∗(g−1) f )

=
[
Π∗(g−1) f

]
(v)

= f (Π(g)v)

And now the left hand side:[
(ψ ◦ Π(g))(v)

]
( f ) = ψ(Π(g)v)( f )

= evΠ(g)v( f )

= f (Π(g)v)

f and v are completely arbitrary, so this holds for all v ∈ V and f ∈ V∗. Thus ψ is
an intertwining map and we can use Schur’s lemma to say ψ is an isomorphism (since
it is clearly not 0). Thus (Π, V) ∼= (Π∗∗, V∗∗).
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# 4

Let (Π1, V1), (Π2, V2) be representations of a matrix Lie group G. Denote
by Hom(V1, V2) the space of linear transformations from V1 to V2. For T ∈
Hom(V1, V2) and g ∈ G, define

Π(g)T = Π2(g) ◦ T ◦ Π1(g−1).

(a) Prove that (Π, Hom(V1, V2)) is a representation of G.
(b) Prove that (Π, Hom(V1, V2)) is isomorphic as a representation to (V1)

∗ ⊗V2.
(c) Prove that T ∈ Hom(V1, V2) is an intertwining map with respect to Π1, Π2

if and only if Π(g)T = T for all g ∈ G.

Solution. (a) Here we will heavily rely on the fact that function composition is associa-
tive and we can re-bracket function composition any way we like.

Π(g1g2)T := Π2(g1g2) ◦ T ◦ Π1

(
(g1g2)

−1
)

= Π2(g1g2) ◦ T ◦ Π1

(
g−1

2 g−1
1

)
=
(

Π2(g1) ◦ Π2(g2)
)
◦ T ◦

(
Π1(g−1

2 ) ◦ Π1(g−1
1 )
)

= Π2(g1) ◦
(

Π2(g2) ◦ T ◦ Π1(g−1
2 )
)
◦ Π1(g−1

1 )

= Π2(g1) ◦
(

Π(g2)T
)
◦ Π1(g−1

1 )

=
(

Π(g1) ◦ Π(g2)
)

T

(b) Take the map ρ : V∗
1 ⊗ V2 → Hom(V1, V2) defined by ρ( f ⊗ v)(a) := f (a)v where

f ∈ V∗
1 , v ∈ V2 and a ∈ V1. We’ll now show the following diagram commutes.

V∗
1 ⊗ V2 Hom(V1, V2)

V∗
1 ⊗ V2 Hom(V1, V2)

ρ

Π∗
1(g)⊗Π2(g) Π(g)

ρ

(
ρ ◦
[
Π∗

1(g)⊗ Π2(g)
])

( f ⊗ v)(a) = ρ[Π∗
1(g) f ⊗ Π2(g)v] (a)

= f (g−1a)Π2(g)v([
Π(g) ◦ ρ

]
( f ⊗ v)

)
(a) =

(
Π2(g) ◦ f (−)v ◦ Π1(g−1)

)
(a)

= Π2(g)v f (g−1a)

Where I’ve used the notation (Π∗
1(g) f )(a) = f (g−1a) for convenience. Hence ρ is an

intertwining map.
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To show ρ has an inverse let’s look at the function τ : Hom(V1, V2) → V∗
1 ⊗ V2

defined by

τ(φ) =
dim V1

∑
i=1

e∗i ⊗ φ(ei)

where {ei} is a basis for V1 and
{

e∗i
}

is the corresponding dual basis. Now we’ll show
τ ◦ ρ = idV∗

1 ⊗V2 and ρ ◦ τ = idHom(V1,V2).

ρ(τ(φ))(v) = ∑ e∗i (v)φ(ei) = φ
(
∑ e∗i (v)ei

)
= φ(v)

τ(ρ( f ⊗ v)) = ∑ e∗i ⊗ ρ( f ⊗ v)(ei) = ∑ e∗i ⊗ f (ei)v = f ⊗ v

Thus τ = ρ−1 and ρ is an isomorphism.
(c) Take Π1 to be isomorphic to Π2 with intertwining map T. This means the

following diagram commutes for all g ∈ G.

V1 V2

V1 V2

T

Π1(g) Π2(g)

T

Or written as an equation we have

Π2(g) ◦ T = T ◦ Π1(g)

Now we can compose both sides on the left with Π1(g−1).

Π2(g) ◦ T ◦ Π1(g−1) = T ◦ Π1(g) ◦ Π1(g−1)

= T ◦ Π1(g) ◦ Π1(g−1)

= T ◦ Π1(gg−1)

= T ◦ Π1(e)
= T ◦ idV1

= T

This argument used all equivalences, not implications, so this shows the equivalence.
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# 5

Let V be a finite-dimensional real or complex representation of a matrix Lie group
or Lie algebra. The following are not necessarily related.

(a) Prove that every non-trivial invariant subspace contains a non-trivial irre-
ducible subrepresentation of V.

(b) Suppose V is irreducible and complex. Consider the direct sum represen-
tation V ⊕ V. Prove that every non-trivial invariant subspace W of V is
isomorphic (as a representation) to V, and is of the form

W = {(t1v, t2v) : v ∈ V},

for some t1, t2 ∈ C not both zero.

Solution. (a) Let W be the invariant subspace. When W is one dimensional it’s clear
that itself is an irreducible subrepresentation. Now assume this is true for dim W = n
and let’s look at the case where dim W = n + 1. Write W = A ⊕ B where A is one
dimensional and B is n-dimensional. There are n ways to do this, but one of them is
guaranteed to have an irrep in B.

(b) Please see the next problem to see why any irreducible subrep of V ⊕ V is
isomorphic to V. To show W is isomorphic to to V, it’s clear that it’s first a subspace
and that dim W = dim V. By the fact that all finite dimension vector spaces of the same
dimension are the same up the isomorphism it is clear that W ∼= V.
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# 6

Let V1, V2 be non-isomorphic, irreducible (real or complex) representations of a
matrix Lie group or Lie algebra. Consider the direct sum representation V1 ⊕ V2
and regard V1, V2 as subspaces of V1 ⊕ V2 in the obvious way.

(a) Let W be a non-trivial irreducible subrepresentation of V1 ⊕ V2. Prove that
W = V1 or V2.

(b) Prove that V1, V2 are the only non-trivial invariant subspaces of V1 ⊕ V2.

Solution. We’ll just do part (b) because it implies (a). Let W be a a non-trivial irrep of
V1 ⊕ V2 and let

{
e1

i
}

be a basis for V1 and
{

e2
j

}
be a basis for V2 such that W contains

some (e1
i , e2

j ) for some particular i and j. By assignment 3 problem 1 we know

V = spanF {Π(A)v : A ∈ G}.

Let’s apply this theorem with v = (e1
i , e2

j ). Thus any irrep that contains non-zero vectors
in both vector spaces must equal the entire vector space representation. That said if one
of the entries in (−,−) is the zero vector, then we can use the following fact[

Π1 ⊕ Π2(G)
]
(v, 0) = (Π1(G)v, 0).

Thus V1 and V2 are irreps, and indeed the only ones.
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# 7

Consider the representation Hm(R3) of SO(3) defined as in the previous assign-
ment, that is, with Σ : SO(3) → GL(Hm(R3)) given by

Σ(A) f = f ◦ A−1.

Denote the associated Lie algebra representation by σ : so(3) → gl(Hm(R3)) and
extend it to so(3)C by complex linearity. Denote the extension by σ̃.

(a) Prove that so(3)C is isomorphic as a complex Lie algebra to sl(2; C) via

φ :

 0 2ai i(b + c)
−2ai 0 c − b

−i(b + c) b − c 0

 7→
(

a b
c −a

)
.

(b) Consider the representation σ̃ ◦ φ−1 of sl(2; C). Explain how it follows
from the previous assignment and what we did in lecture that σ̃ ◦ φ−1 is
isomorphic to (π2m, V2m(C

2)).
(c) Verify that h(x, y, z) = (x + iy)m is a primitive element. That is, prove that

h ∈ Hm(R3), that it is an eigenvector of σ̃(φ−1(H)), and that σ̃(φ−1(X))h =
0.

(d) Introducing polar coordinates x = r sin s cos t, y = r sin s sin t and z =
r cos s, prove that for f ∈ Hm(R3) we have

σ̃(φ−1(H)) f = −2i
∂ f
∂t

σ̃(φ−1(X)) f = eit
(
−i

∂ f
∂s

+ cot(s)
∂ f
∂t

)
σ̃(φ−1(Y)) f = eit

(
i
∂ f
∂s

+ cot(s)
∂ f
∂t

)
.

Solution. (a) First recall that so(3)C
∼= so(n; C), which if a, b, c ∈ C is spanned by ele-

ments of the form in the problem statement above. Please take the following computer
assisted proof.
from sympy import Symbol , I, simplify
from sympy.matrices import Matrix
from sympy.abc import a, b, c, d, e, f

A = Matrix([
[ 0, 2 * a * I, I * (b + c)],
[ -2 * a * I, 0, c - b],
[-I * (b + c), b - c, 0]

])
B = Matrix([

[ 0, 2 * d * I, I * (e + f)],
[ -2 * d * I, 0, f - e],
[-I * (e + f), e - f, 0]

])
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def varphi(mat):
a = -I * mat[1] / 2
b = (mat[7] - I * mat[2]) / 2
c = (-I * mat[2] + mat[5]) / 2
return Matrix([

[-a, b],
[ c, a]

])

simplify(varphi(A * B - B * A))[
b f − ce −2ae + 2bd

2a f − 2cd −b f + ce

]
varphi(A) * varphi(B) - varphi(B) * varphi(A)[

b f − ce −2ae + 2bd
2a f − 2cd −b f + ce

]
I love computers.

(b) To show σ̃ ◦ φ−1 is isomorphic to (π2m, V2m(C
2))

(c) First we show h ∈ Hm(R3) where ∂2
zh is 0.

△h = ∂2
xh + ∂2

yh = m(m − 1)(x + iy)m−2 − m(m − 1)(x + iy)m−2 = 0

Now let’s calculate σ̃ where x =
[
x y z

]⊺.

σ̃(X) f =
d
dt

f (e−tXx)
∣∣∣∣
t=0

=
d
dt

f (x(t))
∣∣∣∣
t=0

=
∂ f
∂x

∂x
∂t

∣∣∣∣
t=0

+
∂ f
∂y

∂y
∂t

∣∣∣∣
t=0

+
∂ f
∂z

∂z
∂t

∣∣∣∣
t=0

It’s not hard to see that ∂x(t)
∂t

∣∣∣
t=0

= −Xx and hence we have the following equations
for the partials:

∂x
∂t

∣∣∣∣
t=0

= −(X11x + X12y + X13z)

∂y
∂t

∣∣∣∣
t=0

= −(X21x + X22y + X23z)

∂z
∂t

∣∣∣∣
t=0

= −(X31x + X32y + X33z).

Now we can verify h is a eigenvector of σ̃(φ−1(H)).

σ̃(φ−1(H)) = σ̃
([ 0 2i 0

−2i 0 0
0 0 0

])
= −2iy

∂

∂x
+ 2ix

∂

∂y

Hence

σ̃(φ−1(H))h = −2iym(x + iy)m−1 − 2xm(x + iy)m−1

= −2m(x + iy)m = h.
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And now to show σ̃(φ−1(X))h = 0.

σ̃(φ−1(X))h =

[
−iz

∂

∂x
+ z

∂

∂y
+ (ix − y)

∂

∂z

]
(x + iy)m

= −izm(x + iy)m−1 + izm(x + iy)m−1 = 0

(d) To do this problem one must calculate the Jacobian

∂(x, y, z)
∂(r, s, t)

and I do not have time for that today I’m afraid. Once those are calculated you can use
the chain rule

∂

∂x
=

∂r
∂x

∂

∂r
+

∂s
∂x

∂

∂s
+

∂t
∂x

∂

∂t
to calculate the partials and then it’s some algebra.

I don’t understand what this problem was supposed to show us though, and how it
was related to spherical harmonics.
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# 8

Let π : sl(3; C) → gl(V) be an irreducible complex representation of sl(3; C), and
denote by π∗ the dual representation, acting on V∗.

(a) Prove that the weights of π∗ are the negatives of the weights of π.
(b) Prove that if π has highest weight (m1, m2), then π∗ has highest weight

(m2, m1).

Solution. (a) First recall the dual representation of a Lie algebra representation is given
by

π∗(X) = −π(X)⊺.

Also recall the fact that any matrix A ∈ Mn(C) satisfies spectrum A = spectrum A⊺.
Thus if

π(H1)v = m1v and π(H2)v = m2v

then m1 ∈ spectrum π(H1)
⊺ and m2 ∈ spectrum π(H2)

⊺. Finally, accounting for the
minus sign in the dual representation we have −m1 ∈ spectrum(−π(H1)

⊺) = π∗(H1)
and −m2 ∈ spectrum(−π(H2)

⊺) = π∗(H2). Thus for any weight (m1, m2) belonging
to π, (−m1,−m2) belongs to π∗.

(b) Let µ = (m1, m2) be the highest weight of π. This means there are a, b ≥ 0 such
that for all weights (m′

1, m′
2)

m1 − m′
1 = 2a − b

m2 − m′
2 = −a + 2b

and thus adding the two equations together we have

m1 + m2 − (m′
1 + m′

2) = a + b.

Now take µ∗ = (m∗
1 , m∗

2) = (−m̂1,−m̂2) be the highest weight of π∗. This implies there
exist a′, b′ ≥ 0 such that for all weights (m∗

1 , m∗
2) = (−m̃1,−m̃2) such that

m̂1 − m̃′
1 = −2a′ + b′

m̂2 − m̃′
2 = a′ − 2b′

Again adding the two equations together we have

m̂1 + m̂2 − (m̃1 + m̃2) = −(a′ + b′)
m̃1 + m̃2 − (m̂1 + m̂2) = a′ + b′

And this somehow shows m̂1 = m2 and m̂2 = m1. Just kidding, I’m pretty lost.
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