Lie Groups and Lie Algebras Assignment 4

Name: Nate Stemen (20906566)
Due: Wed, Mar 10, 2020 10:00 PM
Email: nate@stemen.email
Course: PMATH 863

\# 1

Let (σ, V) be a complex representation of $\mathrm{sl}(2 ; \mathbb{C})$. Define H, X, Y as in p. 96 of Hall. Let $v \in V \backslash\{0\}$ be an eigenvector of $\sigma(H)$ such that $\sigma(X) v=0$, and define $v_{k}=\sigma(Y)^{k} v$ for $k \geq 0$. Prove that

$$
\sigma(X) v_{k}=k(\lambda-k+1) v_{k-1}, \text { for all } k \geq 1
$$

Solution. Let $\sigma(H) v=\lambda v$ and recall the following commutation relations:

$$
[X, Y]=H \quad[H, Y]=-2 Y
$$

Now let's calculate $\sigma(X) v_{k}$.

$$
\begin{aligned}
\sigma(X) v_{k} & =\sigma(X) \sigma(Y)^{k} v \\
& =[\sigma(X) \sigma(Y)] \sigma(Y)^{k-1} v \\
& =[\sigma(H)+\sigma(Y) \sigma(X)] \sigma(Y)^{k-1} v \\
& =k \sigma(H) \sigma(Y)^{k-1} v+\sigma(Y)^{k} \underbrace{\sigma(X) v}_{0} \\
& =k[\sigma(Y) \sigma(H)-2 \sigma(Y)] \sigma(Y)^{k-2} v \\
& =k[\sigma(Y)^{k-1} \underbrace{\sigma(H) v}_{\lambda v}-2(k-1) \underbrace{\sigma(Y)^{k-1} v}_{v_{k-1}}] \\
& =k(\lambda-2 k+2) v_{k-1}
\end{aligned}
$$

$\sigma(H)=\sigma([X, Y])=\sigma(X) \sigma(Y)-\sigma(Y) \sigma(X)$
$-2 \sigma(Y)=\sigma([H, Y])=\sigma(H) \sigma(Y)-\sigma(Y) \sigma(H)$

Not sure if the question is incorrect or if I missed something. I cannot see it though. I've looked through for at least 2 hours, so if you see my error please point it out.

\# 2

Let $\left(\Pi_{1}, V_{1}\right),\left(\Pi_{2}, V_{2}\right)$ two representations of a connected matrix Lie group. Prove that $\left(\Pi_{1}, V_{1}\right)$ is isomorphic to $\left(\Pi_{2}, V_{2}\right)$ if and only if $\left(\pi_{1}, V_{1}\right)$ is isomorphic to $\left(\pi_{2}, V_{2}\right)$, where $\left(\pi_{1}, V_{1}\right),\left(\pi_{2}, V\right)$ denote the associated Lie algebra representations.

Solution. Suppose $\left(\Pi_{1}, V_{2}\right) \cong\left(\Pi_{2}, V_{2}\right)$ by an intertwining map ϕ. Then we have a commutative diagram.

Since this holds for all $g \in G$ it will certainly hold for all $\mathrm{e}^{t X}$ with $X \in \mathfrak{g}$.

$$
\begin{aligned}
{\left[\phi \circ \Pi_{1}\left(\mathrm{e}^{t X}\right)\right] v } & =\left[\Pi_{2}\left(\mathrm{e}^{t X}\right) \circ \phi\right] v \\
{\left[\phi \circ \mathrm{e}^{t \pi_{1}(X)}\right] v } & =\left[\mathrm{e}^{t \pi_{2}(X)} \circ \phi\right] v \\
\phi\left[\mathrm{e}^{t \pi_{1}(X)} v\right] & =\mathrm{e}^{t \pi_{2}(X)}[\phi(v)] \\
\phi\left[\mathbb{1} v+t \pi_{1}(X) v+\mathcal{O}\left(t^{2}\right)\right] & =\left[\mathbb{1}+t \pi_{2}(X)+\mathcal{O}\left(t^{2}\right)\right] \phi(v) \\
\phi(v)+t \phi\left(\pi_{1}(X) v\right)+\mathcal{O}\left(t^{2}\right) & =\phi(v)+t \pi_{2}(X) \phi(v)+\mathcal{O}\left(t^{2}\right) \\
\phi\left(\pi_{1}(X) v\right) & =\pi_{2}(X) \phi(v)
\end{aligned}
$$

Where the last equality is obtained by cancelling $\phi(v)$ on both sides, dividing by t and taking the limit $t \rightarrow 0$. This implies $\phi \circ \pi_{1}=\pi_{2} \circ \phi$.

To go the other way start with $\psi \circ \pi_{1}(X)=\pi_{2}(X) \circ \psi$. Any element in a connected Lie group can be written as $g=\mathrm{e}^{X_{1}} \mathrm{e}^{X_{2}} \cdots \mathrm{e}^{X_{n}}$ for some n and some X_{i} 's. Now we'll show $\psi \circ \Pi_{1}(g)=\Pi_{2}(g) \circ \psi$.

$$
\begin{aligned}
\psi\left[\Pi_{1}\left(\mathrm{e}^{X_{1}} \mathrm{e}^{X_{2}} \cdots \mathrm{e}^{X_{n}}\right)\right] & =\psi\left[\Pi_{1}\left(\mathrm{e}^{X_{1}}\right) \cdots \Pi_{1}\left(\mathrm{e}^{X_{n}}\right)\right] \\
& =\psi\left[\mathrm{e}^{\pi_{1}\left(X_{1}\right)} \cdots \mathrm{e}^{\pi_{1}\left(X_{n}\right)}\right] \\
& =\mathrm{e}^{\pi_{2}\left(X_{1}\right)} \circ \psi \circ \mathrm{e}^{\pi_{1}\left(X_{2}\right)} \circ \cdots \circ \mathrm{e}^{\pi_{1}\left(X_{n}\right)} \\
& =\mathrm{e}^{\pi_{2}\left(X_{1}\right)} \circ \cdots \circ \mathrm{e}^{\pi_{2}\left(X_{n}\right)} \circ \psi \\
& =\Pi_{2}\left(\mathrm{e}^{X_{1}} \cdots \mathrm{e}^{X_{n}}\right) \circ \psi
\end{aligned}
$$

\# 3

Let V be a real or complex representation of a matrix Lie group or Lie algebra.
(a) Prove that the dual representation V^{*} is irreducible if and only if V is irreducible.
(b) Prove that $\left(V^{*}\right)^{*}$ is isomorphic to V as a representation.
(Given a subspace W of V, its annihilator is the subspace of V^{*} given by

$$
W^{0}=\left\{l \in V^{*}: l(w)=0 \text { for all } w \in W\right\}
$$

Recall that $\left(W^{0}\right)^{0}$ under the canonical vector space isomorphism $V \equiv\left(V^{*}\right)^{*}$, and thus $W \mapsto W^{0}$ establishes a one-to-one correspondence between subspaces of V and those of V^{*}. Look up annihilators if the preceding paragraph is not a review for you.)

Solution. (a) Suppose V^{*} is an irreducible representation, and let $W \subseteq V$ be an invariant subspace. We can then show W^{0} is an invariant subspace of V^{*} by the following.

$$
\left(\Pi^{*}(g) l\right)(w)=l\left(\Pi\left(g^{-1}\right) w\right)=l(\tilde{w})=0
$$

Where we used the fact that $G \cdot W \subseteq W$ and therefore there must exist a \tilde{w} such that $\tilde{w}=\Pi\left(g^{-1}\right) w$. Hence W^{0} is an invariant subspace of V^{*}. Since V^{*} is an irrep, $W^{0}=\{\overline{0}\}$ or $W^{0}=V^{*}$.

If $W^{0}=V^{*}$ then every linear functional annhilates every vector of W which is only possible when $W=\{0\}$ the zero vector.

If $W^{0}=\{\overline{0}\}$ then we want to show $W=V$. We'll do this by contrapositive. So suppose $W \neq V$ is a subspace, and take $\left\{e_{i}\right\}_{i=1}^{n}$ is a basis for V with W spanned by $\left\{e_{i}\right\}_{i=1}^{m}$ with $m<n$. Now define the following linear functional

$$
f(v)=f\left(\sum_{i=1}^{n} \alpha_{i} e_{i}\right)=\sum_{i=m+1}^{n} \alpha_{i}
$$

This is clearly C-linear and homogeneuous, so indeed an element of the dual space. Thus we've found a linear functional such that $\left.f\right|_{W} \equiv 0$. This implies $W^{0} \neq\{\overline{0}\}$. Thus, by contrapositive, $W=V$.

We've just shown V^{*} irrep $\Longrightarrow V$ irrep, and taking the dual of both sides yields $V^{* *}$ irrep $\Longrightarrow V^{*}$ irrep. Now using the natural isomorphism of vector spaces $V^{* *} \cong V$ we have V irrep $\Longrightarrow V^{*}$ irrep .
(b) Take the following commutative diagram:

where $\psi: V \rightarrow V^{* *}$ is defined as $\psi(v)(\phi):=\operatorname{ev}_{v}(\phi)=\phi(v)$. To show this commutes we'll have to show $\Pi^{* *}(g) \circ \psi=\psi \circ \Pi(g)$. First the left hand side where $v \in V$ and
$f \in V^{*}$.

$$
\begin{aligned}
{\left[\left(\Pi^{* *}(g) \circ \psi\right)(v)\right](f) } & =\left[\Pi^{* *}(g)(\psi(v))\right](f) \\
& =\left[\Pi^{* *}(g)\left(\mathrm{ev}_{v}\right)\right](f) \\
& =\operatorname{ev}_{v}\left(\Pi^{*}\left(g^{-1}\right) f\right) \\
& =\left[\Pi^{*}\left(g^{-1}\right) f\right](v) \\
& =f(\Pi(g) v)
\end{aligned}
$$

And now the left hand side:

$$
\begin{aligned}
{[(\psi \circ \Pi(g))(v)](f) } & =\psi(\Pi(g) v)(f) \\
& =\operatorname{ev}_{\Pi(g) v}(f) \\
& =f(\Pi(g) v)
\end{aligned}
$$

f and v are completely arbitrary, so this holds for all $v \in V$ and $f \in V^{*}$. Thus ψ is an intertwining map and we can use Schur's lemma to say ψ is an isomorphism (since it is clearly not 0). Thus $(\Pi, V) \cong\left(\Pi^{* *}, V^{* *}\right)$.

\# 4

Let $\left(\Pi_{1}, V_{1}\right),\left(\Pi_{2}, V_{2}\right)$ be representations of a matrix Lie group G. Denote by $\operatorname{Hom}\left(V_{1}, V_{2}\right)$ the space of linear transformations from V_{1} to V_{2}. For $T \in$ $\operatorname{Hom}\left(V_{1}, V_{2}\right)$ and $g \in G$, define

$$
\Pi(g) T=\Pi_{2}(g) \circ T \circ \Pi_{1}\left(g^{-1}\right)
$$

(a) Prove that $\left(\Pi, \operatorname{Hom}\left(V_{1}, V_{2}\right)\right)$ is a representation of G.
(b) Prove that $\left(\Pi, \operatorname{Hom}\left(V_{1}, V_{2}\right)\right)$ is isomorphic as a representation to $\left(V_{1}\right)^{*} \otimes V_{2}$.
(c) Prove that $T \in \operatorname{Hom}\left(V_{1}, V_{2}\right)$ is an intertwining map with respect to Π_{1}, Π_{2} if and only if $\Pi(g) T=T$ for all $g \in G$.

Solution. (a) Here we will heavily rely on the fact that function composition is associative and we can re-bracket function composition any way we like.

$$
\begin{aligned}
\Pi\left(g_{1} g_{2}\right) T & :=\Pi_{2}\left(g_{1} g_{2}\right) \circ T \circ \Pi_{1}\left(\left(g_{1} g_{2}\right)^{-1}\right) \\
& =\Pi_{2}\left(g_{1} g_{2}\right) \circ T \circ \Pi_{1}\left(g_{2}^{-1} g_{1}^{-1}\right) \\
& =\left(\Pi_{2}\left(g_{1}\right) \circ \Pi_{2}\left(g_{2}\right)\right) \circ T \circ\left(\Pi_{1}\left(g_{2}^{-1}\right) \circ \Pi_{1}\left(g_{1}^{-1}\right)\right) \\
& =\Pi_{2}\left(g_{1}\right) \circ\left(\Pi_{2}\left(g_{2}\right) \circ T \circ \Pi_{1}\left(g_{2}^{-1}\right)\right) \circ \Pi_{1}\left(g_{1}^{-1}\right) \\
& =\Pi_{2}\left(g_{1}\right) \circ\left(\Pi\left(g_{2}\right) T\right) \circ \Pi_{1}\left(g_{1}^{-1}\right) \\
& =\left(\Pi\left(g_{1}\right) \circ \Pi\left(g_{2}\right)\right) T
\end{aligned}
$$

(b) Take the map $\rho: V_{1}^{*} \otimes V_{2} \rightarrow \operatorname{Hom}\left(V_{1}, V_{2}\right)$ defined by $\rho(f \otimes v)(a):=f(a) v$ where $f \in V_{1}^{*}, v \in V_{2}$ and $a \in V_{1}$. We'll now show the following diagram commutes.

$$
\begin{aligned}
& V_{1}^{*} \otimes V_{2} \xrightarrow{\rho} \operatorname{Hom}\left(V_{1}, V_{2}\right) \\
& \Pi_{1}^{*}(g) \otimes \Pi_{2}(g) \downarrow \\
& V_{1}^{*} \otimes V_{2} \xrightarrow{\rho} \operatorname{Hom}\left(V_{1}, V_{2}\right) \\
&\left(\rho \circ\left[\Pi_{1}^{*}(g) \otimes \Pi_{2}(g)\right]\right)(f \otimes v)(a)=\rho\left[\Pi_{1}^{*}(g) f \otimes \Pi_{2}(g) v\right](a) \\
&=f\left(g^{-1} a\right) \Pi_{2}(g) v \\
&([\Pi(g) \circ \rho](f \otimes v))(a)=\left(\Pi_{2}(g) \circ f(-) v \circ \Pi_{1}\left(g^{-1}\right)\right)(a) \\
&=\Pi_{2}(g) v f\left(g^{-1} a\right)
\end{aligned}
$$

Where I've used the notation $\left(\Pi_{1}^{*}(g) f\right)(a)=f\left(g^{-1} a\right)$ for convenience. Hence ρ is an intertwining map.

To show ρ has an inverse let's look at the function $\tau: \operatorname{Hom}\left(V_{1}, V_{2}\right) \rightarrow V_{1}^{*} \otimes V_{2}$ defined by

$$
\tau(\varphi)=\sum_{i=1}^{\operatorname{dim} V_{1}} e_{i}^{*} \otimes \varphi\left(e_{i}\right)
$$

where $\left\{e_{i}\right\}$ is a basis for V_{1} and $\left\{e_{i}^{*}\right\}$ is the corresponding dual basis. Now we'll show $\tau \circ \rho=\operatorname{id}_{V_{1}^{*} \otimes V_{2}}$ and $\rho \circ \tau=\operatorname{id}_{\operatorname{Hom}\left(V_{1}, V_{2}\right)}$.

$$
\begin{gathered}
\rho(\tau(\varphi))(v)=\sum e_{i}^{*}(v) \varphi\left(e_{i}\right)=\varphi\left(\sum e_{i}^{*}(v) e_{i}\right)=\varphi(v) \\
\tau(\rho(f \otimes v))=\sum e_{i}^{*} \otimes \rho(f \otimes v)\left(e_{i}\right)=\sum e_{i}^{*} \otimes f\left(e_{i}\right) v=f \otimes v
\end{gathered}
$$

Thus $\tau=\rho^{-1}$ and ρ is an isomorphism.
(c) Take Π_{1} to be isomorphic to Π_{2} with intertwining map T. This means the following diagram commutes for all $g \in G$.

Or written as an equation we have

$$
\Pi_{2}(g) \circ T=T \circ \Pi_{1}(g)
$$

Now we can compose both sides on the left with $\Pi_{1}\left(g^{-1}\right)$.

$$
\begin{aligned}
\Pi_{2}(g) \circ T \circ \Pi_{1}\left(g^{-1}\right) & =T \circ \Pi_{1}(g) \circ \Pi_{1}\left(g^{-1}\right) \\
& =T \circ \Pi_{1}(g) \circ \Pi_{1}\left(g^{-1}\right) \\
& =T \circ \Pi_{1}\left(g g^{-1}\right) \\
& =T \circ \Pi_{1}(e) \\
& =T \circ \mathrm{id}_{V_{1}} \\
& =T
\end{aligned}
$$

This argument used all equivalences, not implications, so this shows the equivalence.

\# 5

Let V be a finite-dimensional real or complex representation of a matrix Lie group or Lie algebra. The following are not necessarily related.
(a) Prove that every non-trivial invariant subspace contains a non-trivial irreducible subrepresentation of V.
(b) Suppose V is irreducible and complex. Consider the direct sum representation $V \oplus V$. Prove that every non-trivial invariant subspace W of V is isomorphic (as a representation) to V, and is of the form

$$
W=\left\{\left(t_{1} v, t_{2} v\right): v \in V\right\}
$$

for some $t_{1}, t_{2} \in \mathbb{C}$ not both zero.

Solution. (a) Let W be the invariant subspace. When W is one dimensional it's clear that itself is an irreducible subrepresentation. Now assume this is true for $\operatorname{dim} W=n$ and let's look at the case where $\operatorname{dim} W=n+1$. Write $W=A \oplus B$ where A is one dimensional and B is n-dimensional. There are n ways to do this, but one of them is guaranteed to have an irrep in B.
(b) Please see the next problem to see why any irreducible subrep of $V \oplus V$ is isomorphic to V. To show W is isomorphic to to V, it's clear that it's first a subspace and that $\operatorname{dim} W=\operatorname{dim} V$. By the fact that all finite dimension vector spaces of the same dimension are the same up the isomorphism it is clear that $W \cong V$.

\# 6

Let V_{1}, V_{2} be non-isomorphic, irreducible (real or complex) representations of a matrix Lie group or Lie algebra. Consider the direct sum representation $V_{1} \oplus V_{2}$ and regard V_{1}, V_{2} as subspaces of $V_{1} \oplus V_{2}$ in the obvious way.
(a) Let W be a non-trivial irreducible subrepresentation of $V_{1} \oplus V_{2}$. Prove that $W=V_{1}$ or V_{2}.
(b) Prove that V_{1}, V_{2} are the only non-trivial invariant subspaces of $V_{1} \oplus V_{2}$.

Solution. We'll just do part (b) because it implies (a). Let W be a a non-trivial irrep of $V_{1} \oplus V_{2}$ and let $\left\{\mathbf{e}_{i}^{1}\right\}$ be a basis for V_{1} and $\left\{\mathbf{e}_{j}^{2}\right\}$ be a basis for V_{2} such that W contains some ($\mathbf{e}_{i}^{1}, \mathbf{e}_{j}^{2}$) for some particular i and j. By assignment 3 problem 1 we know

$$
V=\operatorname{span}_{\mathbb{F}}\{\Pi(A) v: A \in G\} .
$$

Let's apply this theorem with $v=\left(\mathbf{e}_{i}^{1}, \mathbf{e}_{j}^{2}\right)$. Thus any irrep that contains non-zero vectors in both vector spaces must equal the entire vector space representation. That said if one of the entries in $(-,-)$ is the zero vector, then we can use the following fact

$$
\left[\Pi_{1} \oplus \Pi_{2}(G)\right](v, 0)=\left(\Pi_{1}(G) v, 0\right) .
$$

Thus V_{1} and V_{2} are irreps, and indeed the only ones.

\# 7

Consider the representation $\mathcal{H}_{m}\left(\mathbb{R}^{3}\right)$ of $\mathrm{SO}(3)$ defined as in the previous assignment, that is, with $\Sigma: \mathrm{SO}(3) \rightarrow \mathrm{GL}\left(\mathcal{H}_{m}\left(\mathbb{R}^{3}\right)\right)$ given by

$$
\Sigma(A) f=f \circ A^{-1} .
$$

Denote the associated Lie algebra representation by σ : so $(3) \rightarrow \mathrm{gl}\left(\mathcal{H}_{m}\left(\mathbb{R}^{3}\right)\right)$ and extend it to so $(3)_{\mathrm{C}}$ by complex linearity. Denote the extension by $\widetilde{\sigma}$.
(a) Prove that so $(3)_{\mathrm{C}}$ is isomorphic as a complex Lie algebra to $\mathrm{sl}(2 ; \mathbb{C})$ via

$$
\varphi:\left(\begin{array}{ccc}
0 & 2 a \mathrm{i} & \mathrm{i}(b+c) \\
-2 a \mathrm{i} & 0 & c-b \\
-\mathrm{i}(b+c) & b-c & 0
\end{array}\right) \mapsto\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right) .
$$

(b) Consider the representation $\widetilde{\sigma} \circ \varphi^{-1}$ of $\mathrm{sl}(2 ; \mathbb{C})$. Explain how it follows from the previous assignment and what we did in lecture that $\widetilde{\sigma} \circ \varphi^{-1}$ is isomorphic to $\left(\pi_{2 m}, V_{2 m}\left(\mathbb{C}^{2}\right)\right)$.
(c) Verify that $h(x, y, z)=(x+\mathrm{i} y)^{m}$ is a primitive element. That is, prove that $h \in \mathcal{H}_{m}\left(\mathbb{R}^{3}\right)$, that it is an eigenvector of $\widetilde{\sigma}\left(\varphi^{-1}(H)\right)$, and that $\widetilde{\sigma}\left(\varphi^{-1}(X)\right) h=$ 0.
(d) Introducing polar coordinates $x=r \sin s \cos t, y=r \sin s \sin t$ and $z=$ $r \cos s$, prove that for $f \in \mathcal{H}_{m}\left(\mathbb{R}^{3}\right)$ we have

$$
\begin{aligned}
& \widetilde{\sigma}\left(\varphi^{-1}(H)\right) f=-2 \mathrm{i} \frac{\partial f}{\partial t} \\
& \widetilde{\sigma}\left(\varphi^{-1}(X)\right) f=\mathrm{e}^{\mathrm{i} t}\left(-\mathrm{i} \frac{\partial f}{\partial s}+\cot (s) \frac{\partial f}{\partial t}\right) \\
& \widetilde{\sigma}\left(\varphi^{-1}(Y)\right) f=\mathrm{e}^{\mathrm{i} t}\left(\mathrm{i} \frac{\partial f}{\partial s}+\cot (s) \frac{\partial f}{\partial t}\right) .
\end{aligned}
$$

Solution. (a) First recall that so(3) ${ }_{\mathrm{C}} \cong \operatorname{so}(n ; \mathbb{C})$, which if $a, b, c \in \mathbb{C}$ is spanned by elements of the form in the problem statement above. Please take the following computer assisted proof.

```
from sympy import Symbol, I, simplify
from sympy.matrices import Matrix
from sympy.abc import a, b, c, d, e, f
A = Matrix([
    [ 0, 2*a* I, I* (b + c)],
    [ - 2 * a * I, 0, c - b],
    [-I * (b + c), b - c, 0]
])
B = Matrix([
    [ 0, 2 * d * I, I * (e + f)],
    [-2*d * I, 0, f - e],
    [-I * (e + f), e - f, 0]
])
```

```
def varphi(mat):
    a = -I * mat[1] / 2
    b = (mat[7] - I * mat[2]) / 2
    c = (-I * mat[2] + mat[5]) / 2
    return Matrix([
        [-a, b],
        [ c, a]
    ])
simplify(varphi(A * B - B * A))
```

$$
\left[\begin{array}{cc}
b f-c e & -2 a e+2 b d \\
2 a f-2 c d & -b f+c e
\end{array}\right]
$$

varphi(A) * varphi(B) - varphi(B) * varphi(A)

$$
\left[\begin{array}{cc}
b f-c e & -2 a e+2 b d \\
2 a f-2 c d & -b f+c e
\end{array}\right]
$$

I love computers.
(b) To show $\tilde{\sigma} \circ \varphi^{-1}$ is isomorphic to $\left(\pi_{2 m}, V_{2 m}\left(\mathbb{C}^{2}\right)\right)$
(c) First we show $h \in \mathcal{H}_{m}\left(\mathbb{R}^{3}\right)$ where $\partial_{z}^{2} h$ is 0 .

$$
\Delta h=\partial_{x}^{2} h+\partial_{y}^{2} h=m(m-1)(x+\mathrm{i} y)^{m-2}-m(m-1)(x+\mathrm{i} y)^{m-2}=0
$$

Now let's calculate $\tilde{\sigma}$ where $\mathbf{x}=\left[\begin{array}{lll}x & y & z\end{array}\right]^{\top}$.

$$
\begin{aligned}
\tilde{\sigma}(X) f & =\left.\frac{\mathrm{d}}{\mathrm{~d} t} f\left(\mathrm{e}^{-t X} \mathbf{x}\right)\right|_{t=0} \\
& =\left.\frac{\mathrm{d}}{\mathrm{~d} t} f(\mathbf{x}(t))\right|_{t=0} \\
& =\left.\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}\right|_{t=0}+\left.\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}\right|_{t=0}+\left.\frac{\partial f}{\partial z} \frac{\partial z}{\partial t}\right|_{t=0}
\end{aligned}
$$

It's not hard to see that $\left.\frac{\partial \mathbf{x}(t)}{\partial t}\right|_{t=0}=-X \mathbf{x}$ and hence we have the following equations for the partials:

$$
\begin{aligned}
& \left.\frac{\partial x}{\partial t}\right|_{t=0}=-\left(X_{11} x+X_{12} y+X_{13} z\right) \\
& \left.\frac{\partial y}{\partial t}\right|_{t=0}=-\left(X_{21} x+X_{22} y+X_{23} z\right) \\
& \left.\frac{\partial z}{\partial t}\right|_{t=0}=-\left(X_{31} x+X_{32} y+X_{33} z\right) .
\end{aligned}
$$

Now we can verify h is a eigenvector of $\tilde{\sigma}\left(\varphi^{-1}(H)\right)$.

$$
\tilde{\sigma}\left(\varphi^{-1}(H)\right)=\tilde{\sigma}\left(\left[\begin{array}{ccc}
0 & 2 \mathrm{i} & 0 \\
-2 \mathrm{i} & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right)=-2 \mathrm{i} y \frac{\partial}{\partial x}+2 \mathrm{i} x \frac{\partial}{\partial y}
$$

Hence

$$
\begin{aligned}
\tilde{\sigma}\left(\varphi^{-1}(H)\right) h & =-2 \mathrm{i} y m(x+\mathrm{i} y)^{m-1}-2 x m(x+\mathrm{i} y)^{m-1} \\
& =-2 m(x+\mathrm{i} y)^{m}=h .
\end{aligned}
$$

And now to show $\tilde{\sigma}\left(\varphi^{-1}(X)\right) h=0$.

$$
\begin{aligned}
\tilde{\sigma}\left(\varphi^{-1}(X)\right) h & =\left[-\mathrm{i} z \frac{\partial}{\partial x}+z \frac{\partial}{\partial y}+(\mathrm{i} x-y) \frac{\partial}{\partial z}\right](x+\mathrm{i} y)^{m} \\
& =-\mathrm{i} z m(x+\mathrm{i} y)^{m-1}+\mathrm{i} z m(x+\mathrm{i} y)^{m-1}=0
\end{aligned}
$$

(d) To do this problem one must calculate the Jacobian

$$
\frac{\partial(x, y, z)}{\partial(r, s, t)}
$$

and I do not have time for that today I'm afraid. Once those are calculated you can use the chain rule

$$
\frac{\partial}{\partial x}=\frac{\partial r}{\partial x} \frac{\partial}{\partial r}+\frac{\partial s}{\partial x} \frac{\partial}{\partial s}+\frac{\partial t}{\partial x} \frac{\partial}{\partial t}
$$

to calculate the partials and then it's some algebra.
I don't understand what this problem was supposed to show us though, and how it was related to spherical harmonics.

\# 8

Let $\pi: \mathrm{sl}(3 ; \mathbb{C}) \rightarrow \mathrm{gl}(V)$ be an irreducible complex representation of $\mathrm{sl}(3 ; \mathbb{C})$, and denote by π^{*} the dual representation, acting on V^{*}.
(a) Prove that the weights of π^{*} are the negatives of the weights of π.
(b) Prove that if π has highest weight $\left(m_{1}, m_{2}\right)$, then π^{*} has highest weight $\left(m_{2}, m_{1}\right)$.

Solution. (a) First recall the dual representation of a Lie algebra representation is given by

$$
\pi^{*}(X)=-\pi(X)^{\top}
$$

Also recall the fact that any matrix $A \in \mathcal{M}_{n}(\mathbb{C})$ satisfies spectrum $A=\operatorname{spectrum} A^{\top}$. Thus if

$$
\pi\left(H_{1}\right) v=m_{1} v \quad \text { and } \quad \pi\left(H_{2}\right) v=m_{2} v
$$

then $m_{1} \in$ spectrum $\pi\left(H_{1}\right)^{\top}$ and $m_{2} \in \operatorname{spectrum} \pi\left(H_{2}\right)^{\top}$. Finally, accounting for the minus sign in the dual representation we have $-m_{1} \in \operatorname{spectrum}\left(-\pi\left(H_{1}\right)^{\top}\right)=\pi^{*}\left(H_{1}\right)$ and $-m_{2} \in \operatorname{spectrum}\left(-\pi\left(H_{2}\right)^{\top}\right)=\pi^{*}\left(H_{2}\right)$. Thus for any weight $\left(m_{1}, m_{2}\right)$ belonging to $\pi,\left(-m_{1},-m_{2}\right)$ belongs to π^{*}.
(b) Let $\mu=\left(m_{1}, m_{2}\right)$ be the highest weight of π. This means there are $a, b \geq 0$ such that for all weights $\left(m_{1}^{\prime}, m_{2}^{\prime}\right)$

$$
\begin{aligned}
& m_{1}-m_{1}^{\prime}=2 a-b \\
& m_{2}-m_{2}^{\prime}=-a+2 b
\end{aligned}
$$

and thus adding the two equations together we have

$$
m_{1}+m_{2}-\left(m_{1}^{\prime}+m_{2}^{\prime}\right)=a+b .
$$

Now take $\mu^{*}=\left(m_{1}^{*}, m_{2}^{*}\right)=\left(-\hat{m}_{1},-\hat{m}_{2}\right)$ be the highest weight of π^{*}. This implies there exist $a^{\prime}, b^{\prime} \geq 0$ such that for all weights $\left(m_{1}^{*}, m_{2}^{*}\right)=\left(-\tilde{m}_{1},-\tilde{m}_{2}\right)$ such that

$$
\begin{aligned}
& \hat{m}_{1}-\tilde{m}_{1}^{\prime}=-2 a^{\prime}+b^{\prime} \\
& \hat{m}_{2}-\tilde{m}_{2}^{\prime}=a^{\prime}-2 b^{\prime}
\end{aligned}
$$

Again adding the two equations together we have

$$
\begin{aligned}
& \hat{m}_{1}+\hat{m}_{2}-\left(\tilde{m}_{1}+\tilde{m}_{2}\right)=-\left(a^{\prime}+b^{\prime}\right) \\
& \tilde{m}_{1}+\tilde{m}_{2}-\left(\hat{m}_{1}+\hat{m}_{2}\right)=a^{\prime}+b^{\prime}
\end{aligned}
$$

And this somehow shows $\hat{m}_{1}=m_{2}$ and $\hat{m}_{2}=m_{1}$. Just kidding, I'm pretty lost.

