Lie Groups and Lie Algebras Assignment 5

Name: Nate Stemen (20906566)
Due: Wed, Mar 24, 2020 10:00 PM
Email: nate@stemen.email

\# 1

Consider the adjoint representation of $\mathrm{sl}(3 ; \mathbb{C})$ as a representation of $\mathrm{sl}(2 ; \mathbb{C})$ by restriction to the subalgebra $g_{1}=\operatorname{span}_{C}\left\{H_{1}, X_{1}, Y_{1}\right\} \simeq \operatorname{sl}(2 ; \mathbb{C})$.
(a) Decompose this representation as a direct sum of irreducible representations of $\mathrm{sl}(2 ; \mathrm{C})$.
(b) Which isomorphism types appear in the decomposition in (a), and with what multiplicity?

Solution. (a) Since the wording of this question is quite confusing, it's helpful to clarify how I interpreted the question. We're working with the representation ad $\left.\right|_{\mathrm{g}_{1}}: \mathrm{g}_{1} \rightarrow$ $\operatorname{gl}(\mathrm{sl}(3 ; \mathbb{C}))=\operatorname{End}(\mathrm{sl}(3 ; \mathbb{C}))$.

In order to understand the invariant subspaces of ad $\left.\right|_{\mathrm{g}_{1}}$ we first find the eigenvectors of $\operatorname{ad}_{H_{1}}$ that are annihilated by $\mathrm{ad}_{X_{1}}$. Indeed the commutation relations easily show we have

$$
\begin{array}{rlrl}
{\left[H_{1}, X_{1}\right]} & =2 X_{2} & {\left[X_{1}, X_{1}\right]} & =0 \\
{\left[H_{1}, Y_{2}\right]} & =Y_{2} & {\left[X_{1}, Y_{2}\right]=0} \\
{\left[H_{1}, X_{3}\right]} & =X_{3} & {\left[X_{1}, X_{3}\right]=0}
\end{array}
$$

Now we can apply ad ${Y_{1}}$ to each one of these eigenvectors to better understand the invariant subspaces. I've ignored constants in the following chains for simplicity.

$$
\begin{aligned}
& X_{1} \xrightarrow{\left[Y_{1}, X_{1}\right]} H_{1} \xrightarrow{\left[Y_{1}, H_{1}\right]} Y_{1} \xrightarrow{\left[Y_{1}, Y_{1}\right]} 0 \\
& Y_{2} \xrightarrow{\left[Y_{1}, Y_{2}\right]} Y_{3} \xrightarrow{\left[Y_{1}, Y_{3}\right]} 0 \\
& X_{3} \xrightarrow{\left[Y_{1}, X_{3}\right]} X_{2} \xrightarrow{\left[Y_{1}, X_{2}\right]} 0
\end{aligned}
$$

Hence we have found 3 invariant subspaces.
(b) Again here is where the wording is very confusing: are we talking about the adjoint representation as a whole, or simply the restriction? All the classmates I talked to thought it was the whole thing. I'll do the whole thing so I don't get points taken off for doing something that wasn't quite asked for, but maybe it was???

Since the adjoint representation is 8 dimensional, and above we found 7 , we need one more. Above we never got the vector H_{2} so we'll be looking for that. Inspecting the following two commutation relations helps us spot the last:

$$
\operatorname{ad}_{\Upsilon_{1}}\left(H_{1}\right)=2 \Upsilon_{1} \quad \operatorname{ad}_{Y_{1}}\left(H_{2}\right)=-\Upsilon_{2}
$$

Thus the last invariant subspace is spanned by $H_{1}+2 \mathrm{H}_{2}$. In sum we have

$$
(\operatorname{ad}, \mathrm{sl}(3 ; \mathbb{C})) \cong\left(\pi_{2}, V_{2}\left(\mathbb{C}^{2}\right)\right) \oplus\left(\pi_{1}, V_{1}\left(\mathbb{C}^{2}\right)\right) \oplus\left(\pi_{1}, V_{1}\left(\mathbb{C}^{2}\right)\right) \oplus\left(\pi_{0}, V_{0}\left(\mathbb{C}^{2}\right)\right)
$$

And so the multiplicity of 2 is 1,1 is 2 and 0 is 1 .

\# 2

Recall how we constructed an irreducible complex sl(3; C) representation with highest weight $(1,1)$ by considering the tensor product representation $\mathbb{C}^{3} \otimes$ $\left(C^{3}\right)^{*}$.
(a) Use the same method to construct an irreducible complex sl(3; C)representation with highest weight $(2,0)$, acting on a subspace of $\mathbb{C}^{3} \otimes \mathbb{C}^{3}$.
(b) Determine the dimension of this representation, along with all the weights and their multiplicities. (The multiplicity of a weight is the dimension of its weight space.)
(c) Decompose $\mathbb{C}^{3} \otimes \mathbb{C}^{3}$, the tensor product of two copies of the standard sl(3; C)-representation, into a direct sum of irreducible representations.

Solution. (a) Take the product basis of $\mathbb{C}^{3} \otimes \mathbb{C}^{3}$, that is $e_{i} \otimes e_{j}$ for $i, j \in\{1,2,3\}$. As a guess we will take $e_{1} \otimes e_{1}$ as the starting point to apply $\pi_{2,0}\left(Y_{1}\right)$ and $\pi_{2,0}\left(Y_{2}\right)$ repeatedly. Branching left indicates Y_{1} has been applied, and right indicates Y_{2}.

Thus we have a 6 dimensional representation spanned by the symmetric vectors of $\mathbb{C}^{3} \otimes \mathbb{C}^{3}$. We can also find the associated weights by adding together the weights of e_{i} from the standard representation. Inspecting table 1, and calculating $\mu_{i}-\mu_{j}=a \alpha_{1}+b \alpha_{2}$

Eigenvector	Weight	Multiplicity
$e_{1} \otimes e_{1}$	$(2,0)$	1
$e_{2} \otimes e_{2}$	$(-2,2)$	1
$e_{3} \otimes e_{3}$	$(0,-2)$	1
$e_{1} \otimes e_{2}+e_{2} \otimes e_{1}$	$(0,1)$	1
$e_{1} \otimes e_{3}+e_{3} \otimes e_{1}$	$(1,-1)$	1
$e_{2} \otimes e_{3}+e_{3} \otimes e_{2}$	$(1,0)$	1

Table 1: Weights of product representation
we can (tediously) verify that $(2,0)$ is indeed the highest weight.
(b) Refer to table 1.
(c) Since the above representation is 6 dimensional, and $\mathbb{C}^{3} \otimes \mathbb{C}^{3}$ is 9 dimensional, we need to try and find a representation that lives on the other 3 dimensions. First, note
that the "other" 3 dimensions are spanned by

$$
e_{2} \otimes e_{1}-e_{1} \otimes e_{2} \quad e_{3} \otimes e_{1}-e_{1} \otimes e_{3} \quad e_{3} \otimes e_{2}-e_{2} \otimes e_{3}
$$

which are the antisymmetric subspace of $\mathbb{C}^{3} \otimes \mathbb{C}^{3} .{ }^{1}$ To find what this representation looks like we can again apply $\pi_{2,0}\left(Y_{i}\right)$ with the same convention as above.

This tree is exactly that of the standard representation acting on e_{1}, e_{2}, e_{3}, and hence we conclude that we have one copy of the standard representation. In final, we have

$$
\left(\pi_{2,0}, \mathbb{C}^{3} \otimes \mathbb{C}^{3}\right) \cong\left(\pi_{1,0} \otimes \pi_{1,0}, \operatorname{Sym}^{2}\left(\mathbb{C}^{3}\right)\right) \oplus\left(\pi_{1,0}, \mathbb{C}^{3}\right)
$$

Although I'm wondering if that last factor should be $\left(\pi_{1,0}, \wedge^{2}\left(\mathbb{C}^{3}\right)\right)$? I guess they're isomorphic, so maybe it doesn't matter? Would be good to know.

[^0]
\# 3

Let $V_{m}\left(\mathbb{C}^{3}\right)=\operatorname{span}_{\mathrm{C}}\left\{z_{1}^{k} z_{2}^{l} z_{3}^{m-k-l}: 0 \leq k+l \leq m\right\}$ and define $\left(\Pi_{m}(A) f\right)(z)=$ $f\left(A^{-1} z\right)$ for $A \in \operatorname{SU}(3)$ and $f \in V_{m}\left(\mathbb{C}^{3}\right)$.
(a) Prove that $\left(\Pi_{m}, V_{m}\left(\mathbb{C}^{3}\right)\right)$ is a complex representation of $\mathrm{SU}(3)$.
(b) Find the weights for π_{1} and π_{2}, the sl(3; $\left.\mathbb{C}\right)$-representations associated to Π_{1} and Π_{2}, respectively.
(c) Prove that $\left(\pi_{1}, V_{1}\left(\mathbb{C}^{3}\right)\right)$ and $\left(\pi_{2}, V_{2}\left(\mathbb{C}^{3}\right)\right)$ are irreducible representations of $\mathrm{sl}(3 ; \mathbb{C})$. What are their highest weights?

Solution. (a)

$$
\Pi_{m}(A)\left(\left[\Pi_{m}(B) f\right]\right)(z)=\left[\Pi_{m}(B) f\right]\left(A^{-1} z\right)=f\left(B^{-1} A^{-1} z\right)=\left[\Pi_{m}(A B) f\right](z)
$$

(b) The action of an arbitrary element $X \in \operatorname{sl}(3 ; \mathbb{C})$ under the representation π_{m} is given by

$$
\begin{aligned}
\pi_{m}(X)= & -\left(X_{11} z_{1}+X_{12} z_{2}+X_{13} z_{3}\right) \frac{\partial}{\partial z_{1}} \\
& -\left(X_{21} z_{1}+X_{22} z_{2}+X_{23} z_{3}\right) \frac{\partial}{\partial z_{2}} \\
& -\left(X_{31} z_{1}+X_{32} z_{2}+X_{33} x_{3}\right) \frac{\partial}{\partial z_{3}}
\end{aligned}
$$

Thus, for H_{1} and H_{2} we have

$$
\begin{aligned}
\pi_{m}\left(H_{1}\right) & =z_{2} \frac{\partial}{\partial z_{2}}-z_{1} \frac{\partial}{\partial z_{1}} \\
\pi_{m}\left(H_{2}\right) & =z_{3} \frac{\partial}{\partial z_{3}}-z_{2} \frac{\partial}{\partial z_{2}}
\end{aligned}
$$

Take $m=1$ where $V_{1}=\operatorname{span}_{C}\left\{z_{1}, z_{2}, z_{3}\right\}$. Applying $\pi_{1}\left(H_{1}\right)$ and $\pi_{1}\left(H_{2}\right)$ to an arbitrary element $f=a z_{1}+b z_{2}+c z_{3}$ and ensuring it is an eigenvector yields the following two equations:

$$
\begin{aligned}
& \left(m_{1}+1\right) a z_{1}+\left(m_{1}-1\right) b z_{2}+c m_{1} z_{3}=0 \\
& m_{2} a z_{1}+\left(m_{2}+1\right) b z_{2}+\left(m_{2}-1\right) c z_{3}=0
\end{aligned}
$$

From here we can see there are three weights possible tabulated in table 2.

Weight	Eigenvector	Multiplicity
$(1,-1)$	$b z_{2}$	1
$(-1,0)$	$a z_{1}$	1
$(0,1)$	$c z_{3}$	1

Table 2: Weight Decomposition for $\left(\pi_{1}, V_{1}\left(\mathbb{C}^{3}\right)\right)$

Take $m=2$ where $V_{2}=\operatorname{span}_{C}\left\{z_{1}^{2}, z_{2}^{2}, z_{3}^{2}, z_{1} z_{1}, z_{1} z_{3}, z_{2} z_{3}\right\}$ and we can repeat the process as above with an arbitrary element $f=a z_{1}^{2}+b z_{2}^{2}+c z_{3}^{2}+d z_{1} z_{2}+e z_{1} z_{3}+g z_{2} z_{3}$.

$$
\begin{aligned}
& \pi_{2}\left(H_{1}\right) f=-2 a z_{1}^{2}+2 b z_{2}^{2}-e z_{1} z_{3}+g z_{2} z_{3} \\
& \pi_{2}\left(H_{2}\right) f=-2 b z_{2}^{2}+2 c z_{3}^{2}-d z_{1} z_{d}+e z_{1} z_{3}
\end{aligned}
$$

From here we can read off the weights and eigenvectors, probably much easier than the equation I wrote down for the $m=1$ case.

Weight	Eigenvector	Multiplicity
$(-2,0)$	$a z_{1}^{2}$	1
$(-2,2)$	$b z_{2}^{2}$	1
$(0,2)$	$c z_{3}^{2}$	1
$(0,-1)$	$d z_{1} z_{1}$	1
$(-1,0)$	$c z_{1} z_{3}$	1
$(1,0)$	$g z_{2} z_{3}$	1

Table 3: Weight Decomposition for $\left(\pi_{2}, V_{2}\left(\mathbb{C}^{3}\right)\right)$
(c) To show $\left(\pi_{1}, V_{1}\left(\mathbb{C}^{3}\right)\right)$ and $\left(\pi_{2}, V_{2}\left(\mathbb{C}^{3}\right)\right)$ are irreps we will first show they are highest weight cyclic representations. Then using Proposition 6.14 from Hall, and the fact that all representations of $\operatorname{sl}(3 ; \mathbb{C})$ are completely reducible, we can deduce that the aforementioned representations are irreducible.

For the $m=1$ case we have highest weight vector $v=c z_{3}$ with weight $(0,1)$. This is easily verified (although tedious) by computing $\mu_{i}-\mu_{j}=a \alpha_{1}+b \alpha_{2}$ for the weights in table 2. Thus condition 1 is satisfied. Now we can apply each X_{i} to v to see if it's annihilated.

$$
\begin{aligned}
& \pi_{1}\left(X_{1}\right) v=-z_{2} \frac{\partial}{\partial z_{1}}\left(c z_{3}\right)=0 \\
& \pi_{1}\left(X_{2}\right) v=-z_{3} \frac{\partial}{\partial z_{2}}\left(c z_{3}\right)=0 \\
& \pi_{1}\left(X_{2}\right) v=-z_{3} \frac{\partial}{\partial z_{1}}\left(c z_{3}\right)=0
\end{aligned}
$$

Thus we also have condition two that $\pi_{1}\left(X_{i}\right) v=0$. Lastly we have to verify $V_{1}\left(\mathbb{C}^{3}\right)$ is the smallest invariant subspace that contains v. We can do this by creating the "tree" applying all $\pi_{1}\left(Y_{i}\right)$. We use the convention of "left" means apply $\pi_{1}\left(Y_{1}\right)$, "center" means $\pi_{1}\left(Y_{2}\right)$ and "right" means $\pi_{1}\left(Y_{3}\right)$.

This diagram shows there no invariant subspace containing v that is not the entirety of $V_{1}\left(\mathbb{C}^{3}\right)$. Thus $\left(\pi_{1}, V_{1}\left(\mathbb{C}^{3}\right)\right)$ is a cyclic representation with highest weight $(0,1)$ and by the argument given at the outset of (c) we have an irrep.

Now take $m=2$ and we will run through the same process. The highest weight in table 3 is $(0,2)$ again by (tediously) computing $\mu_{i}-\mu_{j}=a \alpha_{1}+b \alpha_{2}$ repeatedly. We can now check if $v=c z_{3}^{2}$ is annihilated by all $\pi_{2}\left(X_{i}\right)$.

$$
\begin{aligned}
& \pi_{2}\left(X_{1}\right) v=-z_{2} \frac{\partial}{\partial z_{1}}\left(c z_{3}^{2}\right)=0 \\
& \pi_{2}\left(X_{2}\right) v=-z_{3} \frac{\partial}{\partial z_{2}}\left(c z_{3}^{2}\right)=0 \\
& \pi_{2}\left(X_{2}\right) v=-z_{3} \frac{\partial}{\partial z_{1}}\left(c z_{3}^{2}\right)=0
\end{aligned}
$$

And again now we need to check if there is a smaller invariant subspace containing v.

So indeed this representation is highest weight cyclic with weight $(0,2)$ and is thus irreducible by the above logic.

\# 4

In each part below, verify that \mathfrak{t} is a Cartan subalgebra of $\mathfrak{g}=\operatorname{Lie}(G)$. Then find the maximal torus in G corresponding to t.
(a) $G=\mathrm{SO}(2 n) ; \mathfrak{t}=\left\{\left(\begin{array}{ccccc}0 & \theta_{1} & & & \\ -\theta_{1} & 0 & & & \\ & & \ddots & & \\ & & & 0 & \theta_{n} \\ & & & -\theta_{n} & 0\end{array}\right): \theta_{i} \in \mathbb{R}\right\}$.
(b) $G=\mathrm{SO}(2 n+1) ; \mathfrak{t}=\left\{\left(\begin{array}{ccccc}0 & \theta_{1} & & & \\ -\theta_{1} & 0 & & & \\ & & \ddots & & \\ & & 0 & \theta_{n} \\ & & & -\theta_{n} & 0 \\ & & & & 0\end{array}\right): \theta_{i} \in \mathbb{R}\right\}$.

Solution. (a) First lets verify \mathfrak{t} is indeed a Cartan subalgebra. The Lie algebra so($2 n$) consists of $2 n \times 2 n$ skew-symmetric matrices, which clearly \mathfrak{t} is a subset of. In order to show it's a subalgebra, it must be closed under the commutator, but because this is a Cartan subalgebra we have the extra condition that $[X, Y]=0$ for all $X, Y \in \mathfrak{t}$. We'll write elements in \mathfrak{t} in block form using $R_{\alpha}=\left[\begin{array}{cc}0 & \alpha \\ -\alpha & 0\end{array}\right]$.

$$
\left[\left(\begin{array}{lll}
R_{\theta_{1}} & & \\
& \ddots & \\
& & R_{\theta_{n}}
\end{array}\right),\left(\begin{array}{ccc}
R_{\phi_{1}} & & \\
& \ddots & \\
& & R_{\phi_{n}}
\end{array}\right)\right]=\left(\begin{array}{lll}
R_{\theta_{1}} R_{\phi_{1}}-R_{\phi_{1}} R_{\theta_{1}} & & \\
& \ddots & \\
& & R_{\theta_{n}} R_{\phi_{n}}-R_{\phi_{n}} R_{\theta_{n}}
\end{array}\right)
$$

Now to calculate the terms on the diagonal:

$$
\begin{aligned}
R_{\theta_{i}} R_{\phi_{i}}-R_{\phi_{i}} R_{\theta_{i}} & =\left(\begin{array}{cc}
0 & \theta_{i} \\
-\theta_{i} & 0
\end{array}\right)\left(\begin{array}{cc}
0 & \phi_{i} \\
-\phi_{i} & 0
\end{array}\right)-\left(\begin{array}{cc}
0 & \phi_{i} \\
-\phi_{i} & 0
\end{array}\right)\left(\begin{array}{cc}
0 & \theta_{i} \\
-\theta_{i} & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
-\theta_{i} \phi_{i} & 0 \\
0 & -\theta_{i} \phi_{i}
\end{array}\right)-\left(\begin{array}{cc}
-\theta_{i} \phi_{i} & 0 \\
0 & -\theta_{i} \phi_{i}
\end{array}\right) \\
& =\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Thus everything in \mathfrak{t} commutes, and is also closed under the bracket/commutator since the zero matrix is skew symmetric.

Now we must show that anything that commutes with every element of \mathfrak{t} is also in \mathfrak{t}. That is suppose we have some $X \in \operatorname{so}(2 n)$ such that $[X, t]=0$. Writing things out in coordinates for $C=X A$ and $D=A X$ we have

$$
\begin{aligned}
& C_{i j}=\sum_{k=1}^{2 n} X_{i k} A_{k j}=X_{i, j+1} A_{j+1, j}=-\theta_{j} X_{i, j+1} \\
& D_{i j}=\sum_{k=1}^{2 n} A_{i k} X_{k j}=A_{i, i+1} X_{i+1, j}=\theta_{j} X_{i+1, j}
\end{aligned}
$$

And these must be equal, so we have

$$
\begin{equation*}
\theta_{i} X_{i+1, j}+\theta_{j} X_{i, j+1}=0 \tag{1}
\end{equation*}
$$

When $i=j$ then $X_{i+1, i}+X_{i, i+1}=0$, which A also satisfies. Since eq. (1) must be satisfied for all $X \in \mathfrak{t}$, it must be satisfied for X such that $\theta_{i}=0$ for all $i \in \mathbb{Z}_{n}$ except
for one j where $\theta_{j}=1$. Plugging these into eq. (1) we see $X_{i, j+1}=0$ for all $i \neq j$. This, combined with the fact that $X \in \operatorname{so}(2 n)$ is anti-symmetric shows that $X \in \mathfrak{t}$.

Now let's compute the maximal torus corresponding to \mathfrak{t}. It'll be helpful to compute the first few powers of an element of \mathfrak{t} to get a sense of what's going on.

$$
\begin{aligned}
& A^{2}=\left(\begin{array}{ccccc}
0 & \theta_{1} & & & \\
-\theta_{1} & 0 & & & \\
& & \ddots & & \\
& & & 0 & \theta_{n} \\
& & & -\theta_{n} & 0
\end{array}\right)^{2}=\left(\begin{array}{ccccc}
-\theta_{1}^{1} & & & \\
& -\theta_{1}^{2} & & \\
& & \ddots & \\
& & & -\theta_{n}^{2} & \\
& & & & -\theta_{n}^{2}
\end{array}\right) \\
& A^{3}
\end{aligned}=\left(\begin{array}{ccccc}
0 & \theta_{1} & & & \\
-\theta_{1} & 0 & & & \\
& & \ddots & & \\
& & & 0 & \theta_{n} \\
& & & -\theta_{n} & 0
\end{array}\right)=\left(\begin{array}{ccccc}
0 & -\theta_{1}^{3} & & & \\
\theta_{1}^{3} & 0 & & & \\
& & \ddots & & \\
& & & 0 & -\theta_{n}^{3} \\
& & & \theta_{n}^{3} & 0
\end{array}\right)
$$

These give a pretty good hint what the next terms are. Hence we can write

$$
\begin{aligned}
\mathrm{e}^{A} & =\mathbb{1}+A+A^{2}+A^{3}+\cdots \\
& =\left(\begin{array}{cccc}
1-\theta_{1}^{2}+\theta_{1}^{4}+\cdots & \theta_{1}-\theta_{1}^{3}+\theta_{1}^{5}-\cdots & \\
-\theta_{1}+\theta_{1}^{3}-\theta_{1}^{5}+\cdots & 1-\theta_{1}^{2}+\theta_{1}^{4}+\cdots & \\
& =\left(\begin{array}{cccc}
\cos \theta_{1} & \sin \theta_{1} & & \\
-\sin \theta_{1} & \cos \theta_{1} & & \\
& & \ddots & \\
& & \cos \theta_{n} & \sin \theta_{n} \\
& & -\sin \theta_{n} & \cos \theta_{n}
\end{array}\right)
\end{array},\right.
\end{aligned}
$$

Thus maximal torus in $\mathrm{SO}(2 n)$ is (up to isomorphism) $\operatorname{diag}\left(R_{\theta_{1}}, \ldots, R_{\theta_{n}}\right)$ where $R_{\alpha}=$ $\left[\begin{array}{c}\cos \alpha \sin \alpha \\ -\sin \alpha \cos \alpha\end{array}\right]$.
(b) The computations performed above are idential for this case, where there is an additional row and column of 0 's to work with. Thus the maximal torus of $\mathrm{SO}(2 n+1)$ is $\operatorname{diag}\left(R_{\theta_{1}}, \ldots, R_{\theta_{n}}, \mathbb{1}_{2 \times 2}\right)$ which is easily seen to be isomorphic to that of $\mathrm{SO}(2 n)$. The $\mathbb{1}_{2 \times 2}$ arises from the first term of $\mathrm{e}^{A}=\mathbb{1}+\cdots$.
(a) Let $n \geq 3$ and let H be the set of diagonal matrices in $\mathrm{SO}(n)$. Prove that H is a maximal closed abelian subgroup of $\mathrm{SO}(n)$, but is not contained in any maximal torus.
(b) By contrast, let H be any closed abelian subgroup of $\operatorname{SU}(n)$. Prove that H is contained in a maximal torus.

Solution. (a) Note that H is the the collection of matrices of the form $\operatorname{diag}(\pm 1, \ldots, \pm 1)$ with an even number of -1 's on the diagonal. This can be seen from the maximal torus of $\mathrm{SO}(n)$ shown in the previous problem.

First we need to show H is a maximal abelian subgroup of $\operatorname{SO}(n)$. Suppose $A \in$ $\mathrm{SO}(n)$ commutes with all $B \in H$. We can write A in canonical form as

$$
A=\operatorname{diag}\left(R_{1}, \ldots, R_{k}, \pm 1, \ldots, \pm 1\right)
$$

where there are an even number of -1 's and 0 's everywhere else. Using the fact that commuting matrices preserve each others' eigenspaces we see A must preserve the eigenspaces of B. Since every standard basis vector $\mathbf{e}_{i} \in \mathbb{R}^{n}$ is an eigenvector of B, A must map each $A \mathbf{e}_{i}=\lambda_{i} \mathbf{e}_{i}$. Thus all the 2×2 block matrices must be plus or minus 1's. Thus $B \in H$.
(b) Since all $X, Y \in H$ commute, they can be simultaneously diagonalized in some basis. The eigenvalues of a unitary matrix are all unit complex numbers, and hence any element in H can be written as

$$
X=\operatorname{diag}\left(\mathrm{e}^{\mathrm{i} \alpha_{1}}, \ldots, \mathrm{e}^{\mathrm{i} \alpha_{n}}\right)
$$

Since the determinant of X is 1 , we have the condition that $\prod_{i} \mathrm{e}^{\mathrm{i} \alpha_{i}}=1$ which restricts one ${ }^{2} \alpha_{i}$ so we have

$$
X=\operatorname{diag}\left(\mathrm{e}^{\mathrm{i} \alpha_{1}}, \ldots, \mathrm{e}^{-\mathrm{i} \sum_{i=1}^{n-1} \alpha_{i}}\right) .
$$

So every $X \in H$ can be specified by $n-1$ unit complex numbers. Thus H is clearly contained in the maximal torus of $\operatorname{SU}(n)$.

[^1]
\# 6

Let T be the set of diagonal matrices in $\mathrm{U}(n)$ and W its Weyl group. Let S_{n} be the permutation group of $\{1, \ldots, n\}$ and define an action of S_{n} on T by

$$
\sigma \cdot^{\prime} \operatorname{diag}\left(u_{1}, \ldots, u_{n}\right)=\operatorname{diag}\left(u_{\sigma^{-1}(1)}, \ldots, u_{\sigma^{-1}(n)}\right) .
$$

(Here we put a prime in the notation to distinguish this action from the action of W on T.) Also, take a generating element $t_{0}=\operatorname{diag}\left(\mathrm{e}^{2 \pi \mathrm{i} \theta_{1}}, \ldots, \mathrm{e}^{2 \pi \mathrm{i} \theta_{n}}\right)$ in T.
(a) Given $w \in W$, prove that there exists a unique $\sigma \in S_{n}$ such that

$$
w \cdot t_{0}=\sigma \cdot^{\prime} t_{0} .
$$

Deduce that $w \cdot t=\sigma \cdot^{\prime} t$ for all $t \in T$.
(b) In the notation of part (a), prove that the map $w \mapsto \sigma$ defines an injective homomorphism from W into S_{n}.
(c) Prove that the homomorphism in part (b) is also surjective. (Consequently, W is isomorphic to S_{n}.)

Solution. (a) We have $w \cdot t_{0}=x t_{0} x^{-1}=t^{\prime} \in T$ and because t and t^{\prime} only differ by conjugation, they must have the same spectrum, however it's possibly "rearranged". This can clearly be done by $\sigma \cdot^{\prime} t_{0}$, but we need to show it's unique. Suppose we have $\sigma, \tilde{\sigma} \in S_{n}$ such that $w \cdot t_{0}=\sigma \cdot^{\prime} t_{0}=\tilde{\sigma} \cdot{ }^{\prime} t_{0}$. Thus we have

$$
\operatorname{diag}\left(\mathrm{e}^{2 \pi \mathrm{i} \theta_{\sigma^{-1}}(1)}, \ldots, \mathrm{e}^{2 \pi \mathrm{i} \theta_{\sigma^{-1}(n)}}\right)=\operatorname{diag}\left(\mathrm{e}^{2 \pi \mathrm{i} \theta_{\tilde{\sigma}^{-1}(1)}}, \ldots, \mathrm{e}^{2 \pi \mathrm{i} \theta_{\tilde{\sigma}^{-1}(n)}}\right)
$$

and these must be componentwise equal so

$$
\mathrm{e}^{2 \pi \mathrm{i} \theta_{\sigma^{-1}(i)}}=\mathrm{e}^{2 \pi \mathrm{i} \theta_{\tilde{\sigma}^{-1}(i)}}
$$

This implies $\theta_{\sigma^{-1}(i)}=\theta_{\tilde{\sigma}^{-1}(i)}+n$ for some $n \in \mathbb{Z}$, but by the linear independence ${ }^{3}$ of 1 and the θ_{i} 's, this is only possible if $\sigma^{-1}=\tilde{\sigma}^{-1}$ and thus $n=0$, and by the bijectivity of elements in $S_{n}, \sigma=\tilde{\sigma}$.

Since t_{0} generates, we can always write $t=\lim _{n \rightarrow \infty} t_{0}^{a_{n}}$ for some subsequence a_{n} of \mathbb{Z}. We then have

$$
w \cdot t=x\left[\lim _{n \rightarrow \infty} t_{0}^{a_{n}}\right] x^{-1}=\lim _{n \rightarrow \infty} x t_{0}^{a_{n}} x^{-1}=\lim _{n \rightarrow \infty}\left[\sigma \cdot^{\prime} t_{0}\right]^{n}=\sigma \cdot^{\prime} t
$$

(b) Let $f: W \rightarrow S_{n}$ be the map such that $w \mapsto \sigma$. This map is indeed a homomorphism:

$$
\left(w_{1} w_{2}\right) \cdot t=x_{1} x_{2} t x_{2}^{-1} x_{1}^{-1}=x_{2}\left(\sigma_{2} \cdot{ }^{\prime} t\right) x_{2}^{-1}=\left(\sigma_{1} \circ \sigma_{2}\right) \cdot \cdot^{\prime} t
$$

To show this map is an injection, suppose $w_{1} \mapsto \sigma$ and $w_{2} \mapsto \sigma$, that is $f\left(w_{1}\right)=f\left(w_{2}\right)$, where they can only be seen as equal if they are equal on all inputs.

$$
\begin{aligned}
f\left(w_{1}\right) \cdot^{\prime} t & =f\left(w_{2}\right) \cdot{ }^{\prime} t \\
\sigma \cdot^{\prime} t & =\sigma \cdot^{\prime} t \\
x_{1} t x_{1}^{-1} & =x_{2} t x_{2}^{-1} \\
\left(x_{2}^{-1} x_{1}\right) t & =t\left(x_{2}^{-1} x_{1}\right)
\end{aligned}
$$

[^2]Thus $x_{2}^{-1} x_{1}$ commutes with all t, and hence is in T. This implies $x_{2}^{-1} x_{1}$ is modded out of the Weyl group and equals the identity in W. Hence $w_{1}=w_{2}$.
(c) To see that f is surjective, note that we can construct a basis change that swaps any basis vectors around in an element x which we conjugate by in $w \cdot t$. Since there are n ! ways to swap around basis vectors, we can surely hit every element of $S_{n} .{ }^{4}$

[^3]
\# 7

Let G be a compact connected matrix Lie group.
(a) Let $f: G \rightarrow H$ be a surjective Lie group homomorphism from G onto another compact connected matrix Lie group. Prove that if T is a maximal torus in G then $f(T)$ is a maximal torus in H. Deduce that if H is abelian then the restriction $\left.f\right|_{T}$ is surjective already.
(b) Given $g \in G$ and $n \in \mathbb{N}$, prove that there exists $h \in G$ such that $h^{n}=g$.

Solution. (a) Since T is connected and compact, and f is a continuous function, $f(T)$ is also connected and compact. Since f is a homomorphism we have $f(a) f(b)=f(a b)=$ $f(b a)=f(b) f(a)$ if $a, b \in T$, and thus $f(T)$ is also commutative and by Theorem 11.2 in Hall, $f(T)$ is a torus.

To show $f(T)$ is maximal in H, take $K \subseteq H$ to be a torus containing $f(T)$. Take an element $h \in K$, and by the surjectivity of f we are guaranteed to be able to find a $g \in G$ such that $f(g)=h$. Since we can write $g=x t x^{-1}$ by Lemma 11.12 in Hall, we have

$$
h=f(g)=f\left(x t x^{-1}\right)=\underbrace{f(x)}_{\in H} \underbrace{f(t)}_{\in f(T)} f(x)^{-1} .
$$

That is, any element $h \in K$ can be decomposed as $h=f(x) f(t) f(x)^{-1}$ which implies $K=y f(T) y^{-1}$, and thus $f(T)$ is maximal.
(b) Since G is compact and connected, we know exp: $g \rightarrow G$ is surjective, and hence for all $g \in G$ we can fine an $A \in \mathrm{~g}$ such that $g=\mathrm{e}^{A}$. In particular we can also define $h:=\mathrm{e}^{A / n}$ so that $h^{n}=g$.

[^0]: ${ }^{1}$ I wish we learned about symmetric and anti-symmetric powers of vector spaces in this class, because I see them mentioned all over the place when reading material about decomposing representations.

[^1]: ${ }^{2}$ And can be made to be the last.

[^2]: ${ }^{3}$ over \mathbb{Q}

[^3]: ${ }^{4}$ I know this is sloppy, but I'm tired, and I'm not sure what it is, but the Weyl group doesn't feel cool.

