
Lie Groups and Lie Algebras Assignment 5
Name: Nate Stemen (20906566) Due: Wed, Mar 24, 2020 10:00 PM
Email: nate@stemen.email Course: PMATH 863

# 1

Consider the adjoint representation of sl(3; C) as a representation of sl(2; C) by
restriction to the subalgebra g1 = spanC{H1, X1, Y1} ≃ sl(2; C).

(a) Decompose this representation as a direct sum of irreducible representations
of sl(2; C).

(b) Which isomorphism types appear in the decomposition in (a), and with
what multiplicity?

Solution. (a) Since the wording of this question is quite confusing, it’s helpful to clarify
how I interpreted the question. We’re working with the representation ad|g1 : g1 →
gl(sl(3; C)) = End(sl(3; C)).

In order to understand the invariant subspaces of ad|g1 we first find the eigenvectors
of adH1 that are annihilated by adX1 . Indeed the commutation relations easily show we
have

[H1, X1] = 2X2 [X1, X1] = 0
[H1, Y2] = Y2 [X1, Y2] = 0
[H1, X3] = X3 [X1, X3] = 0

Now we can apply adY1 to each one of these eigenvectors to better understand the
invariant subspaces. I’ve ignored constants in the following chains for simplicity.

X1
[Y1,X1]−−−→ H1

[Y1,H1]−−−→ Y1
[Y1,Y1]−−−→ 0

Y2
[Y1,Y2]−−−→ Y3

[Y1,Y3]−−−→ 0

X3
[Y1,X3]−−−→ X2

[Y1,X2]−−−→ 0

Hence we have found 3 invariant subspaces.
(b) Again here is where the wording is very confusing: are we talking about the

adjoint representation as a whole, or simply the restriction? All the classmates I talked
to thought it was the whole thing. I’ll do the whole thing so I don’t get points taken off
for doing something that wasn’t quite asked for, but maybe it was???

Since the adjoint representation is 8 dimensional, and above we found 7, we need
one more. Above we never got the vector H2 so we’ll be looking for that. Inspecting
the following two commutation relations helps us spot the last:

adY1(H1) = 2Y1 adY1(H2) = −Y2.

Thus the last invariant subspace is spanned by H1 + 2H2. In sum we have

(ad, sl(3; C)) ∼= (π2, V2(C
2))⊕ (π1, V1(C

2))⊕ (π1, V1(C
2))⊕ (π0, V0(C

2))

And so the multiplicity of 2 is 1, 1 is 2 and 0 is 1.
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# 2

Recall how we constructed an irreducible complex sl(3; C) representation with
highest weight (1, 1) by considering the tensor product representation C3 ⊗
(C3)∗.

(a) Use the same method to construct an irreducible complex sl(3; C)-
representation with highest weight (2, 0), acting on a subspace of C3 ⊗ C3.

(b) Determine the dimension of this representation, along with all the weights
and their multiplicities. (The multiplicity of a weight is the dimension of its
weight space.)

(c) Decompose C3 ⊗ C3, the tensor product of two copies of the standard
sl(3; C)-representation, into a direct sum of irreducible representations.

Solution. (a) Take the product basis of C3 ⊗ C3, that is ei ⊗ ej for i, j ∈ {1, 2, 3}. As a
guess we will take e1 ⊗ e1 as the starting point to apply π2,0(Y1) and π2,0(Y2) repeatedly.
Branching left indicates Y1 has been applied, and right indicates Y2.

e1 ⊗ e1

e1 ⊗ e2 + e2 ⊗ e1

e2 ⊗ e2

0 e2 ⊗ e3 + e3 ⊗ e2

0 e3 ⊗ e3

0 0

e1 ⊗ e3 + e3 ⊗ e1

e2 ⊗ e3 + e3 ⊗ e2 0

0

Thus we have a 6 dimensional representation spanned by the symmetric vectors of
C3 ⊗ C3. We can also find the associated weights by adding together the weights of ei
from the standard representation. Inspecting table 1, and calculating µi −µj = aα1 + bα2

Eigenvector Weight Multiplicity

e1 ⊗ e1 (2, 0) 1
e2 ⊗ e2 (−2, 2) 1
e3 ⊗ e3 (0,−2) 1

e1 ⊗ e2 + e2 ⊗ e1 (0, 1) 1
e1 ⊗ e3 + e3 ⊗ e1 (1,−1) 1
e2 ⊗ e3 + e3 ⊗ e2 (1, 0) 1

Table 1: Weights of product representation

we can (tediously) verify that (2, 0) is indeed the highest weight.
(b) Refer to table 1.
(c) Since the above representation is 6 dimensional, and C3 ⊗ C3 is 9 dimensional,

we need to try and find a representation that lives on the other 3 dimensions. First, note
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that the “other” 3 dimensions are spanned by

e2 ⊗ e1 − e1 ⊗ e2 e3 ⊗ e1 − e1 ⊗ e3 e3 ⊗ e2 − e2 ⊗ e3

which are the antisymmetric subspace of C3 ⊗ C3.1 To find what this representation
looks like we can again apply π2,0(Yi) with the same convention as above.

e1 ⊗ e2 − e2 ⊗ e1

0 e3 ⊗ e1 − e1 ⊗ e3

e3 ⊗ e2 − e2 ⊗ e3

0 0

0

This tree is exactly that of the standard representation acting on e1, e2, e3, and hence
we conclude that we have one copy of the standard representation. In final, we have

(π2,0, C3 ⊗ C3) ∼= (π1,0 ⊗ π1,0, Sym2(C3))⊕ (π1,0, C3).

Although I’m wondering if that last factor should be (π1,0,
∧2(C3))? I guess they’re

isomorphic, so maybe it doesn’t matter? Would be good to know.

1I wish we learned about symmetric and anti-symmetric powers of vector spaces in this class, because
I see them mentioned all over the place when reading material about decomposing representations.
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# 3

Let Vm(C3) = spanC

{
zk

1 zl
2 zm−k−l

3 : 0 ≤ k + l ≤ m
}

and define (Πm(A) f )(z) =

f (A−1z) for A ∈ SU(3) and f ∈ Vm(C3).
(a) Prove that (Πm, Vm(C3)) is a complex representation of SU(3).
(b) Find the weights for π1 and π2, the sl(3; C)-representations associated to

Π1 and Π2, respectively.
(c) Prove that (π1, V1(C

3)) and (π2, V2(C
3)) are irreducible representations of

sl(3; C). What are their highest weights?

Solution. (a)

Πm(A)
([

Πm(B) f
])

(z) =
[
Πm(B) f

]
(A−1z) = f (B−1A−1z) =

[
Πm(AB) f

]
(z)

(b) The action of an arbitrary element X ∈ sl(3; C) under the representation πm is
given by

πm(X) = −(X11z1 + X12z2 + X13z3)
∂

∂z1

− (X21z1 + X22z2 + X23z3)
∂

∂z2

− (X31z1 + X32z2 + X33x3)
∂

∂z3

Thus, for H1 and H2 we have

πm(H1) = z2
∂

∂z2
− z1

∂

∂z1

πm(H2) = z3
∂

∂z3
− z2

∂

∂z2

Take m = 1 where V1 = spanC {z1, z2, z3}. Applying π1(H1) and π1(H2) to an
arbitrary element f = az1 + bz2 + cz3 and ensuring it is an eigenvector yields the
following two equations:

(m1 + 1)az1 + (m1 − 1)bz2 + cm1z3 = 0
m2az1 + (m2 + 1)bz2 + (m2 − 1)cz3 = 0

From here we can see there are three weights possible tabulated in table 2.

Weight Eigenvector Multiplicity

(1,−1) bz2 1
(−1, 0) az1 1
(0, 1) cz3 1

Table 2: Weight Decomposition for (π1, V1(C
3))
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Take m = 2 where V2 = spanC

{
z2

1, z2
2, z2

3, z1z1, z1z3, z2z3
}

and we can repeat the
process as above with an arbitrary element f = az2

1 + bz2
2 + cz2

3 + dz1z2 + ez1z3 + gz2z3.

π2(H1) f = −2az2
1 + 2bz2

2 − ez1z3 + gz2z3

π2(H2) f = −2bz2
2 + 2cz2

3 − dz1zd + ez1z3

From here we can read off the weights and eigenvectors, probably much easier than
the equation I wrote down for the m = 1 case.

Weight Eigenvector Multiplicity

(−2, 0) az2
1 1

(−2, 2) bz2
2 1

(0, 2) cz2
3 1

(0,−1) dz1z1 1
(−1, 0) ez1z3 1
(1, 0) gz2z3 1

Table 3: Weight Decomposition for (π2, V2(C
3))

(c) To show (π1, V1(C
3)) and (π2, V2(C

3)) are irreps we will first show they are
highest weight cyclic representations. Then using Proposition 6.14 from Hall, and the
fact that all representations of sl(3; C) are completely reducible, we can deduce that the
aforementioned representations are irreducible.

For the m = 1 case we have highest weight vector v = cz3 with weight (0, 1). This
is easily verified (although tedious) by computing µi − µj = aα1 + bα2 for the weights
in table 2. Thus condition 1 is satisfied. Now we can apply each Xi to v to see if it’s
annihilated.

π1(X1)v = −z2
∂

∂z1
(cz3) = 0

π1(X2)v = −z3
∂

∂z2
(cz3) = 0

π1(X2)v = −z3
∂

∂z1
(cz3) = 0

Thus we also have condition two that π1(Xi)v = 0. Lastly we have to verify V1(C
3) is

the smallest invariant subspace that contains v. We can do this by creating the “tree”
applying all π1(Yi). We use the convention of “left” means apply π1(Y1), “center”
means π1(Y2) and “right” means π1(Y3).

z3

0 z2

z1 0 0

z1

0 0 0
This diagram shows there no invariant subspace containing v that is not the entirety

of V1(C
3). Thus (π1, V1(C

3)) is a cyclic representation with highest weight (0, 1) and
by the argument given at the outset of (c) we have an irrep.
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Now take m = 2 and we will run through the same process. The highest weight in
table 3 is (0, 2) again by (tediously) computing µi − µj = aα1 + bα2 repeatedly. We can
now check if v = cz2

3 is annihilated by all π2(Xi).

π2(X1)v = −z2
∂

∂z1

(
cz2

3

)
= 0

π2(X2)v = −z3
∂

∂z2

(
cz2

3

)
= 0

π2(X2)v = −z3
∂

∂z1

(
cz2

3

)
= 0

And again now we need to check if there is a smaller invariant subspace containing v.
z2

3

0 z2z3

z1z3

0 z1z2 z2
1

0 0 0

z2
2

z1z2 0 0

z1z2

z1z3

0 z1z2

z2
1 0 0

z1z3

So indeed this representation is highest weight cyclic with weight (0, 2) and is thus
irreducible by the above logic.
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# 4

In each part below, verify that t is a Cartan subalgebra of g = Lie(G). Then find
the maximal torus in G corresponding to t.

(a) G = SO(2n); t =




0 θ1
−θ1 0

. . .
0 θn

−θn 0

 : θi ∈ R

.

(b) G = SO(2n + 1); t =




0 θ1
−θ1 0

. . .
0 θn

−θn 0
0

 : θi ∈ R

.

Solution. (a) First lets verify t is indeed a Cartan subalgebra. The Lie algebra so(2n)
consists of 2n × 2n skew-symmetric matrices, which clearly t is a subset of. In order
to show it’s a subalgebra, it must be closed under the commutator, but because this is
a Cartan subalgebra we have the extra condition that [X, Y] = 0 for all X, Y ∈ t. We’ll
write elements in t in block form using Rα =

[ 0 α
−α 0

]
.

Rθ1
. . .

Rθn

,

Rϕ1
. . .

Rϕn


 =

 Rθ1 Rϕ1 − Rϕ1 Rθ1
. . .

Rθn Rϕn − Rϕn Rθn


Now to calculate the terms on the diagonal:

Rθi Rϕi − Rϕi Rθi =

(
0 θi

−θi 0

)(
0 ϕi

−ϕi 0

)
−

(
0 ϕi

−ϕi 0

)(
0 θi

−θi 0

)
=

(
−θiϕi 0

0 −θiϕi

)
−

(
−θiϕi 0

0 −θiϕi

)
=

(
0 0
0 0

)
Thus everything in t commutes, and is also closed under the bracket/commutator since
the zero matrix is skew symmetric.

Now we must show that anything that commutes with every element of t is also in t.
That is suppose we have some X ∈ so(2n) such that [X, t] = 0. Writing things out in
coordinates for C = XA and D = AX we have

Cij =
2n

∑
k=1

Xik Akj = Xi,j+1Aj+1,j = −θjXi,j+1

Dij =
2n

∑
k=1

AikXkj = Ai,i+1Xi+1,j = θjXi+1,j

And these must be equal, so we have

θiXi+1,j + θjXi,j+1 = 0. (1)

When i = j then Xi+1,i + Xi,i+1 = 0, which A also satisfies. Since eq. (1) must be
satisfied for all X ∈ t, it must be satisfied for X such that θi = 0 for all i ∈ Zn except
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for one j where θj = 1. Plugging these into eq. (1) we see Xi,j+1 = 0 for all i ̸= j. This,
combined with the fact that X ∈ so(2n) is anti-symmetric shows that X ∈ t.

Now let’s compute the maximal torus corresponding to t. It’ll be helpful to compute
the first few powers of an element of t to get a sense of what’s going on.

A2 =


0 θ1

−θ1 0
. . .

0 θn
−θn 0


2

=


−θ1

1
−θ2

1
. . .

−θ2
n

−θ2
n



A3 =


0 θ1

−θ1 0
. . .

0 θn
−θn 0


3

=


0 −θ3

1
θ3

1 0
. . .

0 −θ3
n

θ3
n 0


These give a pretty good hint what the next terms are. Hence we can write

eA = 1 + A + A2 + A3 + · · ·

=

 1 − θ2
1 + θ4

1 + · · · θ1 − θ3
1 + θ5

1 − · · ·
−θ1 + θ3

1 − θ5
1 + · · · 1 − θ2

1 + θ4
1 + · · ·

. . .



=


cos θ1 sin θ1
− sin θ1 cos θ1

. . .
cos θn sin θn
− sin θn cos θn


Thus maximal torus in SO(2n) is (up to isomorphism) diag(Rθ1 , . . . , Rθn) where Rα =[ cos α sin α
− sin α cos α

]
.

(b) The computations performed above are idential for this case, where there is an
additional row and column of 0’s to work with. Thus the maximal torus of SO(2n + 1)
is diag(Rθ1 , . . . , Rθn , 12×2) which is easily seen to be isomorphic to that of SO(2n). The
12×2 arises from the first term of eA = 1 + · · · .
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# 5

(a) Let n ≥ 3 and let H be the set of diagonal matrices in SO(n). Prove that H
is a maximal closed abelian subgroup of SO(n), but is not contained in any
maximal torus.

(b) By contrast, let H be any closed abelian subgroup of SU(n). Prove that H is
contained in a maximal torus.

Solution. (a) Note that H is the the collection of matrices of the form diag(±1, . . . ,±1)
with an even number of −1’s on the diagonal. This can be seen from the maximal torus
of SO(n) shown in the previous problem.

First we need to show H is a maximal abelian subgroup of SO(n). Suppose A ∈
SO(n) commutes with all B ∈ H. We can write A in canonical form as

A = diag(R1, . . . , Rk,±1, . . . ,±1)

where there are an even number of −1’s and 0’s everywhere else. Using the fact that
commuting matrices preserve each others’ eigenspaces we see A must preserve the
eigenspaces of B. Since every standard basis vector ei ∈ Rn is an eigenvector of B, A
must map each Aei = λiei. Thus all the 2 × 2 block matrices must be plus or minus 1’s.
Thus B ∈ H.

(b) Since all X, Y ∈ H commute, they can be simultaneously diagonalized in some
basis. The eigenvalues of a unitary matrix are all unit complex numbers, and hence any
element in H can be written as

X = diag(eiα1 , . . . , eiαn).

Since the determinant of X is 1, we have the condition that ∏i eiαi = 1 which restricts
one2 αi so we have

X = diag(eiα1 , . . . , e−i ∑n−1
i=1 αi).

So every X ∈ H can be specified by n − 1 unit complex numbers. Thus H is clearly
contained in the maximal torus of SU(n).

2And can be made to be the last.
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# 6

Let T be the set of diagonal matrices in U(n) and W its Weyl group. Let Sn be the
permutation group of {1, . . . , n} and define an action of Sn on T by

σ ·′ diag(u1, . . . , un) = diag(uσ−1(1), . . . , uσ−1(n)).

(Here we put a prime in the notation to distinguish this action from the action of
W on T.) Also, take a generating element t0 = diag(e2π iθ1 , . . . , e2π iθn) in T.

(a) Given w ∈ W, prove that there exists a unique σ ∈ Sn such that

w · t0 = σ ·′ t0.

Deduce that w · t = σ ·′ t for all t ∈ T.
(b) In the notation of part (a), prove that the map w 7→ σ defines an injective

homomorphism from W into Sn.
(c) Prove that the homomorphism in part (b) is also surjective. (Consequently,

W is isomorphic to Sn.)

Solution. (a) We have w · t0 = xt0x−1 = t′ ∈ T and because t and t′ only differ by
conjugation, they must have the same spectrum, however it’s possibly “rearranged”.
This can clearly be done by σ ·′ t0, but we need to show it’s unique. Suppose we have
σ, σ̃ ∈ Sn such that w · t0 = σ ·′ t0 = σ̃ ·′ t0. Thus we have

diag(e2π iθ
σ−1(1) , . . . , e2π iθ

σ−1(n)) = diag(e2π iθ
σ̃−1(1) , . . . , e2π iθ

σ̃−1(n))

and these must be componentwise equal so

e2π iθ
σ−1(i) = e2π iθ

σ̃−1(i) .

This implies θσ−1(i) = θσ̃−1(i) + n for some n ∈ Z, but by the linear independence3 of 1
and the θi’s, this is only possible if σ−1 = σ̃−1 and thus n = 0, and by the bijectivity of
elements in Sn, σ = σ̃.

Since t0 generates, we can always write t = limn→∞ tan
0 for some subsequence an of

Z. We then have

w · t = x
[

lim
n→∞

tan
0

]
x−1 = lim

n→∞
xtan

0 x−1 = lim
n→∞

[
σ ·′ t0

]n
= σ ·′ t

(b) Let f : W → Sn be the map such that w 7→ σ. This map is indeed a homomor-
phism:

(w1w2) · t = x1x2tx−1
2 x−1

1 = x2(σ2 ·′ t)x−1
2 = (σ1 ◦ σ2) ·′ t

To show this map is an injection, suppose w1 7→ σ and w2 7→ σ, that is f (w1) = f (w2),
where they can only be seen as equal if they are equal on all inputs.

f (w1) ·′ t = f (w2) ·′ t
σ ·′ t = σ ·′ t

x1tx−1
1 = x2tx−1

2(
x−1

2 x1

)
t = t

(
x−1

2 x1

)
3over Q
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Thus x−1
2 x1 commutes with all t, and hence is in T. This implies x−1

2 x1 is modded out
of the Weyl group and equals the identity in W. Hence w1 = w2.

(c) To see that f is surjective, note that we can construct a basis change that swaps
any basis vectors around in an element x which we conjugate by in w · t. Since there
are n! ways to swap around basis vectors, we can surely hit every element of Sn.4

4I know this is sloppy, but I’m tired, and I’m not sure what it is, but the Weyl group doesn’t feel cool.

11



Lie Groups and Lie Algebras Assignment 5 Nate Stemen

# 7

Let G be a compact connected matrix Lie group.
(a) Let f : G → H be a surjective Lie group homomorphism from G onto

another compact connected matrix Lie group. Prove that if T is a maximal
torus in G then f (T) is a maximal torus in H. Deduce that if H is abelian
then the restriction f |T is surjective already.

(b) Given g ∈ G and n ∈ N, prove that there exists h ∈ G such that hn = g.

Solution. (a) Since T is connected and compact, and f is a continuous function, f (T) is
also connected and compact. Since f is a homomorphism we have f (a) f (b) = f (ab) =
f (ba) = f (b) f (a) if a, b ∈ T, and thus f (T) is also commutative and by Theorem 11.2
in Hall, f (T) is a torus.

To show f (T) is maximal in H, take K ⊆ H to be a torus containing f (T). Take an
element h ∈ K, and by the surjectivity of f we are guaranteed to be able to find a g ∈ G
such that f (g) = h. Since we can write g = xtx−1 by Lemma 11.12 in Hall, we have

h = f (g) = f (xtx−1) = f (x)︸︷︷︸
∈H

f (t)︸︷︷︸
∈ f (T)

f (x)−1.

That is, any element h ∈ K can be decomposed as h = f (x) f (t) f (x)−1 which implies
K = y f (T)y−1, and thus f (T) is maximal.

(b) Since G is compact and connected, we know exp: g → G is surjective, and hence
for all g ∈ G we can fine an A ∈ g such that g = eA. In particular we can also define
h := eA/n so that hn = g.
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