
Lie Groups and Lie Algebras Assignment 6

Name: Nate Stemen (20906566) Due: Sun, Apr 11, 2020 10:00 PM
Email: nate@stemen.email Course: PMATH 863

# 1

Let G by a compact connected matrix Lie group. Given a subset A of G, recall that
ZG(A) := {g ∈ G : gx = gx for all x ∈ A}. Also, we write ZG(x) for ZG({x}).

(a) Prove that every torus is contained in a maximal torus.
(b) Let S be a torus, prove ZG(S) is the union of all maximal tori in G containing

S.

Solution. (a) Let A be a torus in G. If A is maximal, it’s contained in itlelf A ⊆ A, so
we’re done. Thus assume A is not maximal. By non-maximality of A there exists a
torus T1 containing it. If it’s maximal we’re done, so assume it’s not and hence A ⊊ T1.
Repeat this argument with T1 to obtain T2 and so on. That is we have the following
chain of strict inclusions:

A ⊊ T1 ⊊ T2 ⊊ T3 ⊊ · · ·
We can now pass to the Lie algebra’s where we have

a ⊆ t1 ⊆ t2 ⊆ t3 ⊆ · · · ⊆ g =: Lie(G).

Since g is a finite dimensional vector space, we cannot have an infinite chain of strict
inclusions, so there must exist an n ∈ N such that tn+k = tn for all k ∈ N. However on
compacted, connected matrix Lie groups the exponential map is surjective and hence
exp(ti) = Ti and

Tn+k = exp(tn+k) = exp(tn) = Tn

but we had Tn ⊊ Tn+k thus we have a contradiction. Hence A is contained in a maximal
torus.

(b) Suppose T is a maximal torus containing S. Then by definition we have T ⊆
ZG(S) and hence ZG(S) contains all maximal tori containing S, and also their unions.

Now take g ∈ ZG(S), or written differently as S ⊆ ZG(g). Since S is a connected,
compact matrix Lie group, so is ZG(g)0. Take T ⊆ ZG(g)0 to be a maximal torus that
contains S. Since the exponential map is surjective in this case there must exist an
element X ∈ Lie(G) such that eX = g ∈ ZG(g)0. This implies g is in the center of
ZG(g)0, and using the fact that the Z(G) is equal to the intersection of all maximal tori
we conclude g ∈ T. Thus we’ve found a torus that contains both S and g.
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# 2

(a) Let g ∈ G. Prove that ZG(g)0 is the union of all maximal tori in G containing
g.

(b) Specializing to the case G = SO(3) and let T be the maximal torus corre-
sponding to the Cartain subalgebra given in #4(b) of Assignment 5. Find
g ∈ SO(3) such that ZG(g)0 = T but that ZG(g) is disconnected.

Solution. (a) See proof to #1(b) to see that ZG(g)0 is connected.

(b) Take g =

−1
−1

1

.
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# 3

Dont think Imma do this one.

Solution.
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# 4

Let G be a compact matrix Lie group and V and W irreducible complex represen-
tations of G, equipped with G-invariant innter products (−,−)V and (−,−)W ,
respectively, which are linear in the first variable and conjugate linear in the
second.

(a) Let φ : V → W be an intertwining map. Prove that there exists α ∈ R≥0
such that

(φ(v), φ(v′))W = α(v, v′)V

for all v, v′ ∈ V.
(b) Imitate the proof of the orthogonality of characters to prove the follow-

ing orthogonality relations for matrix coefficients: Given v1, v2 ∈ V and
w1, w2 ∈ W, there holds∫

G
(g · v1, v2)V(g · w1, w2)W dµG =

(φ(v1), w1)W(φ(v2), w2)W

dim V
[V ∼= W]

where [A] is the Iverson bracket and φ : V → W is any intertwining
isometry, that is, and intertwining isomoprhism such that the conclusion of
part (a) holds with α = 1.

Solution. (a) By Schur’s lemma φ is either the 0 map—in which case α = 0—or a
scalar multiple of the identity. Thus as long as φ is not identically 0, then V and W are
isomorphic and by Assignment 3 problem 6 there is only one G-invariant inner product
up to a positive constant.

(φ(v), φ(v′))W = (βv, βv′)W = |β|2(v, v′)W = |β|2︸︷︷︸
≥0

γ︸︷︷︸
≥0

(v, v′)V

Thus if we take α := |β|2γ then the above equation is satisfied.
(b) Let Π and Σ be the irreps corresponding to V and W respectively. Define the

map L : W → V.

L :=
∫

G
Π(g) ◦ φ−1 ◦ Σ(g)† dµ(g)

and note that Π(h) ◦ L ◦ Σ(h−1) = L by the invariance of the Haar measure and so
Π(h) ◦ L = L ◦ Σ(h) and hence L is an intertwining map. By Schur’s lemma L = 0 or
L = λ1. When L = 0 we can take φ−1(w) = (w, w1)v1 and thus

0 = (L(w2), v2)

=
∫

G
(Π(x) ◦ φ−1 ◦ Σ(x)†w2, v2)dµ(x)

=
∫

G
(Π(x)(Σ(x−1)w2, w1)v1, w1)dµ(x)

=
∫

G
(Π(x)v1, v2)(Σ(x−1)w2, w1)dµ(x)

=
∫

G
(Π(x)v1, v2)(Σ(x)w1, w2)dµ(x)
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Now we have the case where V ∼= W and φ can be treated as a map φ : V → V. As
above we have L = λ1 and taking the trace of both sides we have tr(L) = λ dim V =
tr(φ). Thus

(L(v2), v1) =
tr(φ)

dim V
(v1, v2).

Similar to above we take φ(v) = (v, w2)v1. so that

(v1, w2)((v2, w2))

dim V
=

tr(φ)

dim V
(v1, w2)

= (L(w2), v1)

=
∫

G
(Π(x) ◦ φ ◦ Π(x−1)w2, v2)dµ(x)

=
∫

G
(Π(x)v1, v2)(w2, Π(x)w1)dµ(x)

Thus, done. I understand this is probably sloppy.
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# 5

Some character computations.
(a) Let χ denote the character of the irreducible representation Hm(R3) of

SO(3). Compute χ(g) for g ∈ SO(3) of the form

g =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

.

(b) Recall the irreducible SU(2)-representations (Πm, Vm(C2)). Use the char-
acter computation to prove that, as representations of SU(2), we have for
non-negative integers m ≥ n that

Vm ⊗ Vn ∼= Vm+n ⊕ Vm+n−2 ⊕ · · · ⊕ Vm−n+2 ⊕ Vm−n

Solution. (a)

(b) Let g =

[
eiθ 0
0 e−iθ

]
be an element of the maximal torus of SU(2).

χVm⊗Vn(g) = χm(g)χn(g)

=

(
m

∑
k=0

ei(m−2k)θ

)(
n

∑
j=0

ei(n−2j)θ

)

=
m,n

∑
k,j=0,0

ei(m+n−2k−2j)θ

=
n

∑
l=0

m+n−l

∑
j=p

ei(m+n−2k)θ

=
n

∑
l=0

m+n−2l

∑
j=0

ei(m+n−2l−2k)θ

=
n

∑
l=0

χm+n−2l(g)

This shows the representations are equal, and since every element in SU(2) can be
written as x = yty−1 with t in the torus, and characters are class functions this must be
true on the whole of SU(2).
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# 6

Let G be a compact matrix Lie group.
(a) Let (Π, V) be a complex representation of G and χ it’s character. Prove that

|χ(g)| ≤ dim V, with equality holding if and only if Π(g) is multiplication
by a scalar. Here g ∈ G is an arbitrary element.

(b) Prove that g belongs to Z(G), the center of G, if and only if |χV(g)| = dim V
for every irreducible complex representation V of G. Here χV denotes the
character of V.

Solution. (a) The compactness of G implies (Π, V) is unitary, and hence Π(g) is a
normal matrix, with eigenvalues eiθi where i ranges from 1 to k ≤ dim V. Now since
the trace is equal to the sum of the eigenvalues we have

|χ(g)| =
∣∣∣∣∣ k

∑
i=1

eiθi

∣∣∣∣∣ ≤ k

∑
i=1

∣∣∣eiθi
∣∣∣ = k

∑
i=1

1 = k ≤ dim V.

In the case when Π(g) has full rank (k = dim V) then it’s not hard to see that∣∣∣∑dim V
i=1 eiθi

∣∣∣ = dim V implies that all of the θi are equal (up to 2π). We can then

rewrite all the eigenvalues as eiα+i θ̃i = eiαei θ̃i . Thus Π(g) = eiα1V .
If Π(g) = β1V , then since the representation is unitary Π(g)Π(g)† = 1V which

implies β = eiφ. Thus all of the eigenvalues are eiφ and since the identity map is full
rank |χ(g)| = dim V.

(b) Suppose g ∈ Z(G). Then Π(g) is an intertwining map and by Schur’s lemma
Π(g) = α1 which implies |χV(g)| = dim V as above.

Now take |χV(g)| = dim V. As we’ve shown above Π(g) must be a multiple of the
identity and hence

Π(gx) = Π(g)Π(x) = α1VΠ(x) = Π(x)α1V = Π(x)Π(g) = Π(xg)

Since G is a matrix Lie group Π is a faithful representation or isometrically similar to
one, so thus we can conclude gx = xg.
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