# Lie Groups and Lie Algebras Assignment 6 

Name: Nate Stemen (20906566)
Due: Sun, Apr 11, 2020 10:00 PM
Email: nate@stemen.email

## \# 1

Let $G$ by a compact connected matrix Lie group. Given a subset $A$ of $G$, recall that $Z_{G}(A):=\{g \in G: g x=g x$ for all $x \in A\}$. Also, we write $Z_{G}(x)$ for $Z_{G}(\{x\})$.
(a) Prove that every torus is contained in a maximal torus.
(b) Let $S$ be a torus, prove $Z_{G}(S)$ is the union of all maximal tori in $G$ containing $S$.

Solution. (a) Let $A$ be a torus in $G$. If $A$ is maximal, it's contained in itlelf $A \subseteq A$, so we're done. Thus assume $A$ is not maximal. By non-maximality of $A$ there exists a torus $T_{1}$ containing it. If it's maximal we're done, so assume it's not and hence $A \subsetneq T_{1}$. Repeat this argument with $T_{1}$ to obtain $T_{2}$ and so on. That is we have the following chain of strict inclusions:

$$
A \subsetneq T_{1} \subsetneq T_{2} \subsetneq T_{3} \subsetneq \cdots
$$

We can now pass to the Lie algebra's where we have

$$
\mathrm{a} \subseteq \mathrm{t}_{1} \subseteq \mathrm{t}_{2} \subseteq \mathrm{t}_{3} \subseteq \cdots \subseteq \mathrm{~g}=: \operatorname{Lie}(G) .
$$

Since $g$ is a finite dimensional vector space, we cannot have an infinite chain of strict inclusions, so there must exist an $n \in \mathbb{N}$ such that $\mathrm{t}_{n+k}=\mathrm{t}_{n}$ for all $k \in \mathbb{N}$. However on compacted, connected matrix Lie groups the exponential map is surjective and hence $\exp \left(\mathrm{t}_{i}\right)=T_{i}$ and

$$
T_{n+k}=\exp \left(t_{n+k}\right)=\exp \left(\mathrm{t}_{n}\right)=T_{n}
$$

but we had $T_{n} \subsetneq T_{n+k}$ thus we have a contradiction. Hence $A$ is contained in a maximal torus.
(b) Suppose $T$ is a maximal torus containing $S$. Then by definition we have $T \subseteq$ $Z_{G}(S)$ and hence $Z_{G}(S)$ contains all maximal tori containing $S$, and also their unions.

Now take $g \in Z_{G}(S)$, or written differently as $S \subseteq Z_{G}(g)$. Since $S$ is a connected, compact matrix Lie group, so is $Z_{G}(g)_{0}$. Take $T \subseteq Z_{G}(g)_{0}$ to be a maximal torus that contains $S$. Since the exponential map is surjective in this case there must exist an element $X \in \operatorname{Lie}(G)$ such that $\mathrm{e}^{X}=g \in Z_{G}(g)_{0}$. This implies $g$ is in the center of $Z_{G}(g)_{0}$, and using the fact that the $Z(G)$ is equal to the intersection of all maximal tori we conclude $g \in T$. Thus we've found a torus that contains both $S$ and $g$.

## \# 2

(a) Let $g \in G$. Prove that $Z_{G}(g)_{0}$ is the union of all maximal tori in $G$ containing $g$.
(b) Specializing to the case $G=\mathrm{SO}(3)$ and let $T$ be the maximal torus corresponding to the Cartain subalgebra given in \#4(b) of Assignment 5. Find $g \in S O(3)$ such that $Z_{G}(g)_{0}=T$ but that $Z_{G}(g)$ is disconnected.

Solution. (a) See proof to $\# 1(b)$ to see that $Z_{G}(g)_{0}$ is connected.
(b) Take $g=\left[\begin{array}{lll}-1 & & \\ & -1 & \\ & & 1\end{array}\right]$.

Dont think Imma do this one.

## Solution.

## \# 4

Let $G$ be a compact matrix Lie group and $V$ and $W$ irreducible complex representations of $G$, equipped with $G$-invariant innter products $(-,-)_{V}$ and $(-,-)_{W}$, respectively, which are linear in the first variable and conjugate linear in the second.
(a) Let $\varphi: V \rightarrow W$ be an intertwining map. Prove that there exists $\alpha \in \mathbb{R}_{\geq 0}$ such that

$$
\left(\varphi(v), \varphi\left(v^{\prime}\right)\right)_{W}=\alpha\left(v, v^{\prime}\right)_{V}
$$

for all $v, v^{\prime} \in V$.
(b) Imitate the proof of the orthogonality of characters to prove the following orthogonality relations for matrix coefficients: Given $v_{1}, v_{2} \in V$ and $w_{1}, w_{2} \in W$, there holds

$$
\int_{G}\left(g \cdot v_{1}, v_{2}\right)_{V} \overline{\left(g \cdot w_{1}, w_{2}\right)_{W}} \mathrm{~d} \mu_{G}=\frac{\left(\varphi\left(v_{1}\right), w_{1}\right)_{W} \overline{\left(\varphi\left(v_{2}\right), w_{2}\right)_{W}}}{\operatorname{dim} V}[V \cong W]
$$

where $[A]$ is the Iverson bracket and $\varphi: V \rightarrow W$ is any intertwining isometry, that is, and intertwining isomoprhism such that the conclusion of part (a) holds with $\alpha=1$.

Solution. (a) By Schur's lemma $\varphi$ is either the 0 map-in which case $\alpha=0$-or a scalar multiple of the identity. Thus as long as $\varphi$ is not identically 0 , then $V$ and $W$ are isomorphic and by Assignment 3 problem 6 there is only one $G$-invariant inner product up to a positive constant.

$$
\left(\varphi(v), \varphi\left(v^{\prime}\right)\right)_{W}=\left(\beta v, \beta v^{\prime}\right)_{W}=|\beta|^{2}\left(v, v^{\prime}\right)_{W}=\underbrace{|\beta|^{2}}_{\geq 0} \underbrace{\gamma}_{\geq 0}\left(v, v^{\prime}\right)_{V}
$$

Thus if we take $\alpha:=|\beta|^{2} \gamma$ then the above equation is satisfied.
(b) Let $\Pi$ and $\Sigma$ be the irreps corresponding to $V$ and $W$ respectively. Define the $\operatorname{map} L: W \rightarrow V$.

$$
L:=\int_{G} \Pi(g) \circ \varphi^{-1} \circ \Sigma(g)^{\dagger} \mathrm{d} \mu(g)
$$

and note that $\Pi(h) \circ L \circ \Sigma\left(h^{-1}\right)=L$ by the invariance of the Haar measure and so $\Pi(h) \circ L=L \circ \Sigma(h)$ and hence $L$ is an intertwining map. By Schur's lemma $L=0$ or $L=\lambda \mathbb{1}$. When $L=0$ we can take $\varphi^{-1}(w)=\left(w, w_{1}\right) v_{1}$ and thus

$$
\begin{aligned}
0 & =\left(L\left(w_{2}\right), v_{2}\right) \\
& =\int_{G}\left(\Pi(x) \circ \varphi^{-1} \circ \Sigma(x)^{\dagger} w_{2}, v_{2}\right) \mathrm{d} \mu(x) \\
& =\int_{G}\left(\Pi(x)\left(\Sigma\left(x^{-1}\right) w_{2}, w_{1}\right) v_{1}, w_{1}\right) \mathrm{d} \mu(x) \\
& =\int_{G}\left(\Pi(x) v_{1}, v_{2}\right)\left(\Sigma\left(x^{-1}\right) w_{2}, w_{1}\right) \mathrm{d} \mu(x) \\
& =\int_{G}\left(\Pi(x) v_{1}, v_{2}\right) \overline{\left(\Sigma(x) w_{1}, w_{2}\right)} \mathrm{d} \mu(x)
\end{aligned}
$$

Now we have the case where $V \cong W$ and $\varphi$ can be treated as a map $\varphi: V \rightarrow V$. As above we have $L=\lambda \mathbb{1}$ and taking the trace of both sides we have $\operatorname{tr}(L)=\lambda \operatorname{dim} V=$ $\operatorname{tr}(\varphi)$. Thus

$$
\left(L\left(v_{2}\right), v_{1}\right)=\frac{\operatorname{tr}(\varphi)}{\operatorname{dim} V} \overline{\left(v_{1}, v_{2}\right)}
$$

Similar to above we take $\varphi(v)=\left(v, w_{2}\right) v_{1}$. so that

$$
\begin{aligned}
\frac{\left(v_{1}, w_{2}\right)\left(\overline{\left(v_{2}, w_{2}\right)}\right)}{\operatorname{dim} V} & =\frac{\operatorname{tr}(\varphi)}{\operatorname{dim} V} \overline{\left(v_{1}, w_{2}\right)} \\
& =\left(L\left(w_{2}\right), v_{1}\right) \\
& =\int_{G}\left(\Pi(x) \circ \varphi \circ \Pi\left(x^{-1}\right) w_{2}, v_{2}\right) \mathrm{d} \mu(x) \\
& =\int_{G}\left(\Pi(x) v_{1}, v_{2}\right)\left(w_{2}, \Pi(x) w_{1}\right) \mathrm{d} \mu(x)
\end{aligned}
$$

Thus, done. I understand this is probably sloppy.

## \# 5

Some character computations.
(a) Let $\chi$ denote the character of the irreducible representation $\mathcal{H}_{m}\left(\mathbb{R}^{3}\right)$ of $\mathrm{SO}(3)$. Compute $\chi(g)$ for $g \in \mathrm{SO}(3)$ of the form

$$
g=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right) .
$$

(b) Recall the irreducible $\mathrm{SU}(2)$-representations $\left(\Pi_{m}, V_{m}\left(\mathbb{C}^{2}\right)\right)$. Use the character computation to prove that, as representations of $\operatorname{SU}(2)$, we have for non-negative integers $m \geq n$ that

$$
V_{m} \otimes V_{n} \cong V_{m+n} \oplus V_{m+n-2} \oplus \cdots \oplus V_{m-n+2} \oplus V_{m-n}
$$

Solution. (a)
(b) Let $g=\left[\begin{array}{cc}\mathrm{e}^{\mathrm{i} \theta} & 0 \\ 0 & \mathrm{e}^{-\mathrm{i} \theta}\end{array}\right]$ be an element of the maximal torus of $\mathrm{SU}(2)$.

$$
\begin{aligned}
\chi_{V_{m} \otimes V_{n}}(g) & =\chi_{m}(g) \chi_{n}(g) \\
& =\left(\sum_{k=0}^{m} \mathrm{e}^{\mathrm{i}(m-2 k) \theta}\right)\left(\sum_{j=0}^{n} \mathrm{e}^{\mathrm{i}(n-2 j) \theta}\right) \\
& =\sum_{k, j=0,0}^{m, n} \mathrm{e}^{\mathrm{i}(m+n-2 k-2 j) \theta} \\
& =\sum_{l=0}^{n} \sum_{j=p}^{m+n-l} \mathrm{e}^{\mathrm{i}(m+n-2 k) \theta} \\
& =\sum_{l=0}^{n} \sum_{j=0}^{m+n-2 l} \mathrm{e}^{\mathrm{i}(m+n-2 l-2 k) \theta} \\
& =\sum_{l=0}^{n} \chi_{m+n-2 l}(g)
\end{aligned}
$$

This shows the representations are equal, and since every element in $\operatorname{SU}(2)$ can be written as $x=y t y^{-1}$ with $t$ in the torus, and characters are class functions this must be true on the whole of $\operatorname{SU}(2)$.

## \# 6

Let $G$ be a compact matrix Lie group.
(a) Let $(\Pi, V)$ be a complex representation of $G$ and $\chi$ it's character. Prove that $|\chi(g)| \leq \operatorname{dim} V$, with equality holding if and only if $\Pi(g)$ is multiplication by a scalar. Here $g \in G$ is an arbitrary element.
(b) Prove that $g$ belongs to $Z(G)$, the center of $G$, if and only if $\left|\chi_{V}(g)\right|=\operatorname{dim} V$ for every irreducible complex representation $V$ of $G$. Here $\chi_{V}$ denotes the character of $V$.

Solution. (a) The compactness of $G$ implies $(\Pi, V)$ is unitary, and hence $\Pi(g)$ is a normal matrix, with eigenvalues $\mathrm{e}^{\mathrm{i} \theta_{i}}$ where $i$ ranges from 1 to $k \leq \operatorname{dim} V$. Now since the trace is equal to the sum of the eigenvalues we have

$$
|\chi(g)|=\left|\sum_{i=1}^{k} \mathrm{e}^{\mathrm{i} \theta_{i}}\right| \leq \sum_{i=1}^{k}\left|\mathrm{e}^{\mathrm{i} \theta_{i}}\right|=\sum_{i=1}^{k} 1=k \leq \operatorname{dim} V .
$$

In the case when $\Pi(g)$ has full rank $(k=\operatorname{dim} V)$ then it's not hard to see that $\left|\sum_{i=1}^{\operatorname{dim} V} \mathrm{e}^{\mathrm{i} \theta_{i}}\right|=\operatorname{dim} V$ implies that all of the $\theta_{i}$ are equal (up to $2 \pi$ ). We can then rewrite all the eigenvalues as $\mathrm{e}^{\mathrm{i} \alpha+\mathrm{i} \tilde{\theta}_{i}}=\mathrm{e}^{\mathrm{i} \alpha} \mathrm{e}^{\mathrm{i} \tilde{\theta}_{i}}$. Thus $\Pi(g)=\mathrm{e}^{\mathrm{i} \alpha} \mathbb{1}_{V}$.

If $\Pi(g)=\beta \mathbb{1}_{V}$, then since the representation is unitary $\Pi(g) \Pi(g)^{+}=\mathbb{1}_{V}$ which implies $\beta=\mathrm{e}^{\mathrm{i} \varphi}$. Thus all of the eigenvalues are $\mathrm{e}^{\mathrm{i} \varphi}$ and since the identity map is full $\operatorname{rank}|\chi(g)|=\operatorname{dim} V$.
(b) Suppose $g \in Z(G)$. Then $\Pi(g)$ is an intertwining map and by Schur's lemma $\Pi(g)=\alpha \mathbb{1}$ which implies $\left|\chi_{V}(g)\right|=\operatorname{dim} V$ as above.

Now take $\left|\chi_{V}(g)\right|=\operatorname{dim} V$. As we've shown above $\Pi(g)$ must be a multiple of the identity and hence

$$
\Pi(g x)=\Pi(g) \Pi(x)=\alpha \mathbb{1}_{V} \Pi(x)=\Pi(x) \alpha \mathbb{1}_{V}=\Pi(x) \Pi(g)=\Pi(x g)
$$

Since $G$ is a matrix Lie group $\Pi$ is a faithful representation or isometrically similar to one, so thus we can conclude $g x=x g$.

