Lie Groups and Lie Algebras Assignment 6

Name: Nate Stemen (20906566) Email: nate@stemen.email Due: Sun, Apr 11, 2020 10:00 PM Course: PMATH 863

#1

Let *G* by a compact connected matrix Lie group. Given a subset *A* of *G*, recall that $Z_G(A) := \{g \in G : gx = gx \text{ for all } x \in A\}$. Also, we write $Z_G(x)$ for $Z_G(\{x\})$.

- (a) Prove that every torus is contained in a maximal torus.
- (b) Let *S* be a torus, prove $Z_G(S)$ is the union of all maximal tori in *G* containing *S*.

Solution. (a) Let *A* be a torus in *G*. If *A* is maximal, it's contained in itlelf $A \subseteq A$, so we're done. Thus assume *A* is not maximal. By non-maximality of *A* there exists a torus T_1 containing it. If it's maximal we're done, so assume it's not and hence $A \subsetneq T_1$. Repeat this argument with T_1 to obtain T_2 and so on. That is we have the following chain of strict inclusions:

$$A \subsetneq T_1 \subsetneq T_2 \subsetneq T_3 \subsetneq \cdots$$

We can now pass to the Lie algebra's where we have

$$a \subseteq t_1 \subseteq t_2 \subseteq t_3 \subseteq \cdots \subseteq g \eqqcolon Lie(G).$$

Since g is a *finite* dimensional vector space, we cannot have an infinite chain of strict inclusions, so there must exist an $n \in \mathbb{N}$ such that $t_{n+k} = t_n$ for all $k \in \mathbb{N}$. However on compacted, connected matrix Lie groups the exponential map is surjective and hence $\exp(t_i) = T_i$ and

$$T_{n+k} = \exp(t_{n+k}) = \exp(t_n) = T_n$$

but we had $T_n \subsetneq T_{n+k}$ thus we have a contradiction. Hence *A* is contained in a maximal torus.

(b) Suppose *T* is a maximal torus containing *S*. Then by definition we have $T \subseteq Z_G(S)$ and hence $Z_G(S)$ contains all maximal tori containing *S*, and also their unions.

Now take $g \in Z_G(S)$, or written differently as $S \subseteq Z_G(g)$. Since *S* is a connected, compact matrix Lie group, so is $Z_G(g)_0$. Take $T \subseteq Z_G(g)_0$ to be a maximal torus that contains *S*. Since the exponential map is surjective in this case there must exist an element $X \in \text{Lie}(G)$ such that $e^X = g \in Z_G(g)_0$. This implies *g* is in the center of $Z_G(g)_0$, and using the fact that the Z(G) is equal to the intersection of all maximal tori we conclude $g \in T$. Thus we've found a torus that contains both *S* and *g*.

2

- (a) Let $g \in G$. Prove that $Z_G(g)_0$ is the union of all maximal tori in G containing g.
- (b) Specializing to the case G = SO(3) and let *T* be the maximal torus corresponding to the Cartain subalgebra given in #4(b) of Assignment 5. Find $g \in SO(3)$ such that $Z_G(g)_0 = T$ but that $Z_G(g)$ is disconnected.

Solution. (a) See proof to #1(b) to see that $Z_G(g)_0$ is connected.

(b) Take
$$g = \begin{bmatrix} -1 & \\ & -1 & \\ & & 1 \end{bmatrix}$$
.

3

Dont think Imma do this one.

Solution.

4

Let *G* be a compact matrix Lie group and *V* and *W* irreducible complex representations of *G*, equipped with *G*-invariant innter products $(-, -)_V$ and $(-, -)_W$, respectively, which are linear in the first variable and conjugate linear in the second.

(a) Let $\varphi : V \to W$ be an intertwining map. Prove that there exists $\alpha \in \mathbb{R}_{\geq 0}$ such that

$$(\varphi(v), \varphi(v'))_W = \alpha(v, v')_V$$

for all $v, v' \in V$.

(b) Imitate the proof of the orthogonality of characters to prove the following orthogonality relations for matrix coefficients: Given $v_1, v_2 \in V$ and $w_1, w_2 \in W$, there holds

$$\int_{G} (g \cdot v_1, v_2)_V \overline{(g \cdot w_1, w_2)_W} \, \mathrm{d}\mu_G = \frac{(\varphi(v_1), w_1)_W \overline{(\varphi(v_2), w_2)_W}}{\dim V} [V \cong W]$$

where [A] is the Iverson bracket and $\varphi : V \rightarrow W$ is any intertwining isometry, that is, and intertwining isomoprhism such that the conclusion of part (a) holds with $\alpha = 1$.

Solution. (a) By Schur's lemma φ is either the 0 map—in which case $\alpha = 0$ —or a scalar multiple of the identity. Thus as long as φ is not identically 0, then *V* and *W* are isomorphic and by Assignment 3 problem 6 there is only one *G*-invariant inner product up to a positive constant.

$$(\varphi(v),\varphi(v'))_W = (\beta v,\beta v')_W = |\beta|^2 (v,v')_W = \underbrace{|\beta|^2}_{\geq 0} \underbrace{\gamma}_{\geq 0} (v,v')_V$$

Thus if we take $\alpha := |\beta|^2 \gamma$ then the above equation is satisfied.

(b) Let Π and Σ be the irreps corresponding to V and W respectively. Define the map $L: W \to V$.

$$L := \int_G \Pi(g) \circ \varphi^{-1} \circ \Sigma(g)^{\dagger} \, \mathrm{d}\mu(g)$$

and note that $\Pi(h) \circ L \circ \Sigma(h^{-1}) = L$ by the invariance of the Haar measure and so $\Pi(h) \circ L = L \circ \Sigma(h)$ and hence *L* is an intertwining map. By Schur's lemma L = 0 or $L = \lambda \mathbb{1}$. When L = 0 we can take $\varphi^{-1}(w) = (w, w_1)v_1$ and thus

$$0 = (L(w_2), v_2)$$

= $\int_G (\Pi(x) \circ \varphi^{-1} \circ \Sigma(x)^{\dagger} w_2, v_2) d\mu(x)$
= $\int_G (\Pi(x)(\Sigma(x^{-1})w_2, w_1)v_1, w_1) d\mu(x)$
= $\int_G (\Pi(x)v_1, v_2)(\Sigma(x^{-1})w_2, w_1) d\mu(x)$
= $\int_G (\Pi(x)v_1, v_2)\overline{(\Sigma(x)w_1, w_2)} d\mu(x)$

Now we have the case where $V \cong W$ and φ can be treated as a map $\varphi : V \to V$. As above we have $L = \lambda \mathbb{1}$ and taking the trace of both sides we have $tr(L) = \lambda \dim V = tr(\varphi)$. Thus

$$(L(v_2), v_1) = \frac{\operatorname{tr}(\varphi)}{\dim V} \overline{(v_1, v_2)}.$$

Similar to above we take $\varphi(v) = (v, w_2)v_1$. so that

$$\frac{(v_1, w_2)(\overline{(v_2, w_2)})}{\dim V} = \frac{\operatorname{tr}(\varphi)}{\dim V} \overline{(v_1, w_2)} \\
= (L(w_2), v_1) \\
= \int_G (\Pi(x) \circ \varphi \circ \Pi(x^{-1}) w_2, v_2) \, \mathrm{d}\mu(x) \\
= \int_G (\Pi(x) v_1, v_2) (w_2, \Pi(x) w_1) \, \mathrm{d}\mu(x)$$

Thus, done. I understand this is probably sloppy.

# 5							
Some character computations. (a) Let χ denote the character of the irreducible representation $\mathcal{H}_m(\mathbb{R}^3)$ of SO(3). Compute $\chi(g)$ for $g \in SO(3)$ of the form							
	$g = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}.$						
(b) Recall the irreducible SU(2)-representations $(\Pi_m, V_m(\mathbb{C}^2))$. Use the character computation to prove that, as representations of SU(2), we have for non-negative integers $m \ge n$ that							
	$V_m \otimes V_n \cong V_{m+n} \oplus V_{m+n-2} \oplus \cdots \oplus V_{m-n+2} \oplus V_{m-n}$						
Solution. (b) Let	(a) $g = \begin{bmatrix} e^{i\theta} & 0\\ 0 & e^{-i\theta} \end{bmatrix}$ be an element of the maximal torus of SU(2). $\chi_{V_m \otimes V_n}(g) = \chi_m(g)\chi_n(g)$ $= \left(\sum_{k=0}^m e^{i(m-2k)\theta}\right) \left(\sum_{j=0}^n e^{i(n-2j)\theta}\right)$ $= \sum_{k,j=0,0}^{m,n} e^{i(m+n-2k-2j)\theta}$ $= \sum_{l=0}^n \sum_{j=p}^{m+n-l} e^{i(m+n-2k)\theta}$ $= \sum_{l=0}^n \sum_{j=0}^{m+n-2l} e^{i(m+n-2l-2k)\theta}$ $= \sum_{l=0}^n \chi_{m+n-2l}(g)$						

This shows the representations are equal, and since every element in SU(2) can be written as $x = yty^{-1}$ with *t* in the torus, and characters are class functions this must be true on the whole of SU(2).

	a			
11 6				
+ n				
$\pi \mathbf{U}$				

Let *G* be a compact matrix Lie group.

- (a) Let (Π, V) be a complex representation of *G* and χ it's character. Prove that $|\chi(g)| \leq \dim V$, with equality holding if and only if $\Pi(g)$ is multiplication by a scalar. Here $g \in G$ is an arbitrary element.
- (b) Prove that *g* belongs to Z(G), the center of *G*, if and only if $|\chi_V(g)| = \dim V$ for every irreducible complex representation *V* of *G*. Here χ_V denotes the character of *V*.

Solution. (a) The compactness of *G* implies (Π, V) is unitary, and hence $\Pi(g)$ is a normal matrix, with eigenvalues $e^{i\theta_i}$ where *i* ranges from 1 to $k \leq \dim V$. Now since the trace is equal to the sum of the eigenvalues we have

$$|\chi(g)| = \left|\sum_{i=1}^{k} \mathrm{e}^{\mathrm{i}\theta_i}\right| \leq \sum_{i=1}^{k} \left|\mathrm{e}^{\mathrm{i}\theta_i}\right| = \sum_{i=1}^{k} 1 = k \leq \dim V.$$

In the case when $\Pi(g)$ has full rank ($k = \dim V$) then it's not hard to see that $\left|\sum_{i=1}^{\dim V} e^{i\theta_i}\right| = \dim V$ implies that all of the θ_i are equal (up to 2π). We can then rewrite all the eigenvalues as $e^{i\alpha + i\tilde{\theta}_i} = e^{i\alpha}e^{i\tilde{\theta}_i}$. Thus $\Pi(g) = e^{i\alpha}\mathbb{1}_V$.

If $\Pi(g) = \beta \mathbb{1}_V$, then since the representation is unitary $\Pi(g)\Pi(g)^{\dagger} = \mathbb{1}_V$ which implies $\beta = e^{i\varphi}$. Thus all of the eigenvalues are $e^{i\varphi}$ and since the identity map is full rank $|\chi(g)| = \dim V$.

(b) Suppose $g \in Z(G)$. Then $\Pi(g)$ is an intertwining map and by Schur's lemma $\Pi(g) = \alpha \mathbb{1}$ which implies $|\chi_V(g)| = \dim V$ as above.

Now take $|\chi_V(g)| = \dim V$. As we've shown above $\Pi(g)$ must be a multiple of the identity and hence

$$\Pi(gx) = \Pi(g)\Pi(x) = \alpha \mathbb{1}_V \Pi(x) = \Pi(x)\alpha \mathbb{1}_V = \Pi(x)\Pi(g) = \Pi(xg)$$

Since *G* is a matrix Lie group Π is a faithful representation or isometrically similar to one, so thus we can conclude gx = xg.