Lie Groups and Lie Algebras Assignment 6

Name: Nate Stemen (20906566) Due: Sun, Apr 11, 2020 10:00 PM
Email: nate@stemen.email Course: PMATH 863
#1

Let G by a compact connected matrix Lie group. Given a subset A of G, recall that
Zg(A) ={g€ G:gx =gxforall x € A}. Also, we write Zg(x) for Zg({x}).
(a) Prove that every torus is contained in a maximal torus.

(b) Let S be a torus, prove Zg(S) is the union of all maximal tori in G containing
58

Solution. (a) Let A be a torus in G. If A is maximal, it’s contained in itlelf A C A, so
we’re done. Thus assume A is not maximal. By non-maximality of A there exists a
torus T containing it. If it’'s maximal we’re done, so assume it’s not and hence A C Tj.
Repeat this argument with T; to obtain T, and so on. That is we have the following
chain of strict inclusions:

ACThChLCTz G-

We can now pass to the Lie algebra’s where we have
aCt; Ctp Ct3 C--- Cg=Lie(G).

Since g is a finite dimensional vector space, we cannot have an infinite chain of strict
inclusions, so there must exist an n € IN such that t, .y = t, for all k € IN. However on
compacted, connected matrix Lie groups the exponential map is surjective and hence
exp(t;) = T; and

Tk = explbus) = exp(ts) = Ty

but we had T, C T, thus we have a contradiction. Hence A is contained in a maximal
torus.

(b) Suppose T is a maximal torus containing S. Then by definition we have T C
Zs(S) and hence Zg(S) contains all maximal tori containing S, and also their unions.

Now take g € Z5(S), or written differently as S C Zs(g). Since S is a connected,
compact matrix Lie group, so is Zg(g)o. Take T C Z;(g)o to be a maximal torus that
contains S. Since the exponential map is surjective in this case there must exist an
element X € Lie(G) such that eX = ¢ € Z(g)o. This implies g is in the center of
Z:(g)o, and using the fact that the Z(G) is equal to the intersection of all maximal tori
we conclude ¢ € T. Thus we’ve found a torus that contains both S and g.
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(a) Letg € G. Prove that Z;(g)o is the union of all maximal tori in G containing
g.

(b) Specializing to the case G = SO(3) and let T be the maximal torus corre-
sponding to the Cartain subalgebra given in #4(b) of Assignment 5. Find
¢ € SO(3) such that Z5(g)o = T but that Z5(g) is disconnected.

Solution. (a) See proof to #1(b) to see that Z(g)o is connected.

~1
(b) Take g = { -1 ]
1
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Dont think Immma do this one.

Solution.
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Let G be a compact matrix Lie group and V and W irreducible complex represen-
tations of G, equipped with G-invariant innter products (—, —)y and (—, —)w,
respectively, which are linear in the first variable and conjugate linear in the

second.
(@) Let ¢ : V. — W be an intertwining map. Prove that there exists &« € R>g
such that

(¢(v), p(v'))w = a(v,0")y
forallv, v’ € V.
(b) Imitate the proof of the orthogonality of characters to prove the follow-

ing orthogonality relations for matrix coefficients: Given v;,v, € V and
wy, wy € W, there holds

/G(g - 01,02) v (g - wr, wa)w dpg = (¢(Ul)’W1C)1¥rEg€/(UZ>IWZ)W[V ~ W]

where [A] is the Iverson bracket and ¢ : V — W is any intertwining
isometry, that is, and intertwining isomoprhism such that the conclusion of
part (a) holds with « = 1.

Solution. (a) By Schur’s lemma ¢ is either the 0 map—in which case « = 0—or a
scalar multiple of the identity. Thus as long as ¢ is not identically 0, then V and W are
isomorphic and by Assignment 3 problem 6 there is only one G-invariant inner product
up to a positive constant.

(9(v), p(v'))w = (Bv, B )w = |BI* (v, )w = |BI

Thus if we take a == | ,B|2'y then the above equation is satisfied.
(b) Let IT and X be the irreps corresponding to V and W respectively. Define the
mapL: W — V.

L= /GH(g) o9 ox(g)" du(g)

and note that IT1(k) o Lo Z(h~!) = L by the invariance of the Haar measure and so
I1(h) o L = L o X(h) and hence L is an intertwining map. By Schur’s lemma L = 0 or
L = All. When L = 0 we can take ¢ ' (w) = (w, w)v; and thus
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Now we have the case where V = W and ¢ can be treated asamap ¢ : V — V. As

above we have L = Al and taking the trace of both sides we have tr(L)
tr(¢). Thus

(o)) = oy

Similar to above we take ¢(v) = (v, wy)v1. so that

(’01, Uz).

(01,w2) ((v2, w)) _ tr(g) o)
dimV ~ dimy 2
= (L(wz),v1)

_/ x) o @ oTI(x™ Hw, va) dp(x)

/ x)v1,v2) (w2, IT(x)wy) dp(x)

Thus, done. I understand this is probably sloppy.

=AdimV =
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Some character computations.
(a) Let x denote the character of the irreducible representation H,,(RR>) of
SO(3). Compute x(g) for g € SO(3) of the form

1 0 0
g=10 cosf —sint
0 sin6 cosf

(b) Recall the irreducible SU(2)-representations (I, V;,(C?)). Use the char-
acter computation to prove that, as representations of SU(2), we have for
non-negative integers m > n that

Vm & Vn = Vm+n D Vm+n—2 D---D Vm—n+2 D Vm—n

Solution. (a)
6
(b) Let ¢ = {eO eoie] be an element of the maximal torus of SU(2).

ei(m—2k)9> (i ei(n—2j)9>
20
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This shows the representations are equal, and since every element in SU(2) can be
written as x = yty~! with ¢ in the torus, and characters are class functions this must be
true on the whole of SU(2).
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Let G be a compact matrix Lie group.

(a) Let (IT, V) be a complex representation of G and  it’s character. Prove that
Ix(g)| < dim V, with equality holding if and only if I1(g) is multiplication
by a scalar. Here ¢ € G is an arbitrary element.

(b) Prove that g belongs to Z(G), the center of G, if and only if |xv(g)| = dim V
for every irreducible complex representation V of G. Here xy denotes the
character of V.

Solution. (a) The compactness of G implies (I1,V) is unitary, and hence TI(g) is a
normal matrix, with eigenvalues e'% where i ranges from 1 to k < dim V. Now since
the trace is equal to the sum of the eigenvalues we have

In the case when I1(g) has full rank (k = dim V) then it’s not hard to see that
‘an? V it
1=

rewrite all the eigenvalues as e!* 1% = ei®ei%. Thus I1(g) = e!*1y.

If T1(g) = Ply, then since the representation is unitary I1(¢)I1(g)" = 1y which
implies B = e'?. Thus all of the eigenvalues are e'? and since the identity map is full
rank |x(g)| = dim V.

(b) Suppose g € Z(G). Then Il(g) is an intertwining map and by Schur’s lemma
I1(g) = a1 which implies |xv(g)| = dim V as above.

Now take |xy(g)| = dim V. As we've shown above I1(g) must be a multiple of the
identity and hence

= dim V implies that all of the 6; are equal (up to 277). We can then

IT(gx) = II(g)TI(x) = alyII(x) = I(x)aly = IT(x)I1(g) = I1(xg)

Since G is a matrix Lie group I1is a faithful representation or isometrically similar to
one, so thus we can conclude gx = xg.
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