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Problem 1: ZFC

(a) Let S be a set whose elements are non-empty sets and let T be the set that is
the union of the elements of S. Show using the axioms (of ZFC) that there is
amap f: S — T such that f(s) € s forall s € S. Hint: well-order T. Then
for s € S consider s N T. Now use the fact that T is well-ordered.

(b) Let X be a partially ordered set with partial order <. Suppose that all chains
in X have an upper bound. Show the existence of a choice function from (a)
that the set X has a maximal element with respect to <.

Solution. (a) As suggested by the hint, well order T and consider the subsets N T C T
for an arbitrary s € S. Since T is well-ordered, this subset must have a least element
which we denote by syin. Now define our function f : S — T by f(s) = Smin- By
the definition of snip, this is both in T (satisfying the correct range), and in s. Written
differently f(s) := smin € s foralls € S.

(b) Following the hint, we will proceed by contradiction and assume that all chains
in X have an upper bound, but X has not maximal element.

Step 1: Let f be a “choice function”’! on non-empty subsets of P (X) (to X). For a
chain T denote by Upp(T) the set of upper bounds of T (in X) which, by assumption, is
non-empty. Let x = f(Upp(T)). We now show that there is a subset T C Upp(T) that
is non-empty and contains upper bounds that are not contained in T. With t € Upp(T)
and the non-existence of maximal elements in X, there must exist a t' € X such that
t < t'. While t could be in T or not, #' is surely not in T as it is strictly “greater than” ¢,
and t is an upper bound. Thus, for every chain T, we have can find a non-empty set T
that contains strict upper bounds of said chain. Define g to be a function on chains in X
that chooses one such strict upper bounds: that is ¢(T) is an element of T. As noted in
the hint, we can take g(@) = t, for some ty € X since x < tg for all x € @ vacuously.

Step 2: First note that {#y} is indeed a chain: fy < ty and hence all elements are
comparable. Substituting T = {t¢} in the definition of a nice chain we have

g{u e {to} :u <to}) = g(@) = to.

Thus we’ve found {f(} to be a nice chain, and hence they always exist as long as X is
non-empty!

Step 3.a: Leta € I4(x) and suppose a ¢ B. By the definition of I4(x), a € A, and
a < x, which invalidates the definition of x being the smallest element of A \ B. Thus
a € B, and hence I4(x) C B.

Step 3.b: First note that Ig(y) C B since y € B, and Ip(y) is everything that strictly
precedes y. Now when comparing z and x we can compare them based on the sets they
are drawn from: A \ Iz(y) and A \ B respectively. Since B strictly contains Iz(y) we
have A\ B C A\ Ig(y). Hence z must be at least as small as x: z =< x.

11 think this refers to the functions we work with in (a), but I don’t think we ever defined what a
choice function is.
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Step 3.c: We begin with u € Ig(y), v € A, and v < u. Immediately from v < u,
u < y (which comes from u € Iz(y)), and the transitive property of < we have v < y.
In order to show u € I4(x) we must now show u € A, and u < x. If we suppose u ¢ A
then u < y would contradict the definition of y being the smallest element in B \ I4(x)
and thus u € A. By the definition of x, everything in b precedes it,” and hence u < x
putting u € I4(x). Sincev € A, v < u, and u € I4(x), we must have v € I4(x) as well.
Finally by Step 3.a v € B, and since v < y we also have v € Ig(y).

Step 3.d: To show I4(z) C Ip(y) recall Step 3.a where we show I4(x) C B combined
with Step 3.b which shows z < x to combine to say I4(z) C B. Then we must show
that for all a € I4(z) we havea < y. Sincea € [4(z) wehavea < z, and by z < x we
also have a < x. Finally because y is the least element in B \ I4(x) we must havea < y
in order to preserve the definition of y being the least element. Thus I4(z) C Ig(y). To
go the other way take b € Ig(y). Since b < y and y is the least element in B \ I4(x),
be Aand b < x: thatis b € I4(x). We also have b # z because.... By Step 3.c we
cannot have z < b since then z € Ig(y) which contradicts the definition of z as being
the smallest element in A \ Ig(y). Since b # z and z £ b, we must have z > b. Finally
this forces b € A, and hence b € I4(z). This means I4(z) = Iz(y).

Step 3.e: Let us first show that z = y using the fact that A and B are nice chains
(with respect to g).

z=g({ueA:u=<z})=g(la(z)) =g(Is(y)) =g{u€B:u=<y}) =y

Now we cannot have z = x because if we did, then y = x as well, but x € A\ B,
whereas y € B\ I4(x). Thatis x ¢ B,and y € B. Thus z < x and hence z € I4(x), and
by equality with z, y € I4(x). This contradicts the definition of y being in B \ I4(x).
This allows us to conclude that I4 (x) = B, and hence the definition of y is vacuous as
B\ Iz(x) = @. Since we assumed A \ B is non-empty, we have B = {u € A:u <t}
for some t € A. The third possibility would hold if we assumed B \ A was non-empty.

Step 4: To see that Tw is a chain, notice that all t € T, must have come from a nice
chain in P(X). So there exists a nice chain A containing ¢. By Step 3 all nice chains
are either equal, or subsets of one another and hence “comparable”. Now let Z C T,
z € Z,and let f (our choice function) pick a nice chain containing z, and call it A. The
well-ordering of A means A N Z has a least element a. To see a is a least element of Z,
assume thereisa b € Z with b < a. Since b ¢ A, it must be in some other nice chain
B # A. We are now in a situation where A is not an initial segment of B and vice versa,
contradiction the claim in Step 3. Thus a is the least element of Z and hence T, is
well-ordered. Finally we are to prove T, is also nice. Let A be a nice chain with z € A.
We claim that

{fueTo:u<z}={ucA:u=<z}

Assume, by way of contradiction that this is not the case: that there is a y € T, With
y < z such that y ¢ A. We can then find another chain B containing y, and by the key
claim in Step 3 we again have a situation where we have two chains that are not proper
initial segments of one another. Thus the equality of sets is true. As we’ve defined g we
then have

z=g{ueA:u=<z})=9{u € Tw:u<z})

2I’'m not actually convinced of this, but I'm not sure what else to argue.
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Step 5: Let v := ¢(T) and by the definition of g, v € T, and hence a strict upper
bound for Te,. We can then see T, U {v} is a nice chain because it is first a chain with
t < vforallt € T, and it is nice because...well I'm not actually sure how we get
2(?) = v. This is a contradiction because T, was supposed to be the union of all nice
chains in P(X). Thus, our original assumption that X has no maximal elements is false,
and X does contain at least one maximal element.
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Problem 2: S-formulas

(a) Use induction to show that if S is a first-order alphabet and ¢, ¢’ € L° then
if ¢ is a prefix of ¢’ then ¢ = ¢'. Show that this is no longer true if we use
suffixes instead of prefixes.

(b) Show that if S is a first-order alphabet and @1, . .., ¢, @}, . . ., ¢}, € LS then if
¢1- P =) ¢}, aswordsin L® thenn = mand ¢; = ¢/ fori =1,...,n.

Solution. (a) Let P be the property which holds for an S-formula ¢ if and only if for all
S-formulas , ¥ is not a prefix of ¢ and ¢ is not a prefix of . We now proceed by induction,
and first the base case(s).

If ¢ =t; = tp and ¢ is a prefix of ¢, then there exists an a such that ¢ = pa. Without
loss of generality’ we can take ¢ = t| = t, to have t; = t, = t| = tha. This equality
implies t; = #] and t, = t,a. By Lemma 4.2(a) from the text, « = [ (the empty string),
and hence ¢ = ¢. Thus S-formulas of the form ¢ = t; = t, have property P.

If = Rty - - - t, and ¢ is a prefix of ¢, then there exists an a such that ¢ = a. Since
the relation symbol is the first symbol we must have iy = R#] - - - t;,. We then have
Rty -« -ty = Rt} -+ tha, and stripping away the relation® we have t; - - - t, = t] - - - tha.
Again by Lemma 4.2(a) from the text « = [l and ¢ = ¢. Thus S-formulas of the form
¢ = Rt; - - - t, have property P.

Moving on to the induction step we look at —¢ which clearly has property P
inheriting from ¢, combined with the fact that — is not an S-formula. Next we look
at S-formulas of the form ¢ * i where * = A, V, —, <+ where ¢ and ¢ both enjoy the
property P. Let x be a prefix such that ¢ * ¢ = ya. Since * must appear on the right
hand side it can either appear in x or a. In the first case we have ¢ * p = B * ya and
hence { = ya forcing « = [ and ¢ = . In the second case we have ¢ *x ¢ = xp * ¢
and hence ¢ = xp forcing p = U and ¢ = x. Thus all S-formulas ¢ * ¢ do not have
S-formula-prefixes.

Finally we have Vx¢ and Jx¢ which enjoy P because Vx and Jx are not S-formulas,
and ¢ enjoys P.

(b)

3is this true?
4Is this allowed? If so, by what means?
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Problem 3: Uniqueness decomposition

Let S be a first-order alphabet, n > 1,and t4,...,t, € TS. fw=1t- -t, € S*
Show by induction that for each i < |w|, there is a unique term ¢ € T° and unique
v € §$* such that w = w(1..i]tv.

Solution.
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