Logic and Computability Assignment 1

Name: Nate Stemen (20906566)
Due: Jan 21, 2022 11:59PM
Email: nate@stemen.email

Problem 1: ZFC

(a) Let S be a set whose elements are non-empty sets and let T be the set that is the union of the elements of S. Show using the axioms (of ZFC) that there is a map $f: S \rightarrow T$ such that $f(s) \in s$ for all $s \in S$. Hint: well-order T. Then for $s \in S$ consider $s \cap T$. Now use the fact that T is well-ordered.
(b) Let X be a partially ordered set with partial order \prec. Suppose that all chains in X have an upper bound. Show the existence of a choice function from (a) that the set X has a maximal element with respect to \preceq.

Solution. (a) As suggested by the hint, well order T and consider the subset $s \cap T \subseteq T$ for an arbitrary $s \in S$. Since T is well-ordered, this subset must have a least element which we denote by $s_{\min }$. Now define our function $f: S \rightarrow T$ by $f(s):=s_{\min }$. By the definition of $s_{\min }$, this is both in T (satisfying the correct range), and in s. Written differently $f(s):=s_{\min } \in s$ for all $s \in S$.
(b) Following the hint, we will proceed by contradiction and assume that all chains in X have an upper bound, but X has not maximal element.

Step 1: Let f be a "choice function" ${ }^{1}$ on non-empty subsets of $\mathcal{P}(X)$ (to X). For a chain T denote by $\operatorname{Upp}(T)$ the set of upper bounds of T (in X) which, by assumption, is non-empty. Let $x=f(\operatorname{Upp}(T))$. We now show that there is a subset $\bar{T} \subset \operatorname{Upp}(T)$ that is non-empty and contains upper bounds that are not contained in T. With $t \in \operatorname{Upp}(T)$ and the non-existence of maximal elements in X, there must exist a $t^{\prime} \in X$ such that $t \prec t^{\prime}$. While t could be in T or not, t^{\prime} is surely not in T as it is strictly "greater than" t, and t is an upper bound. Thus, for every chain T, we have can find a non-empty set \bar{T} that contains strict upper bounds of said chain. Define g to be a function on chains in X that chooses one such strict upper bounds: that is $g(T)$ is an element of \bar{T}. As noted in the hint, we can take $g(\varnothing)=t_{0}$ for some $t_{0} \in X$ since $x \prec t_{0}$ for all $x \in \varnothing$ vacuously.

Step 2: First note that $\left\{t_{0}\right\}$ is indeed a chain: $t_{0} \preceq t_{0}$ and hence all elements are comparable. Substituting $T=\left\{t_{0}\right\}$ in the definition of a nice chain we have

$$
g\left(\left\{u \in\left\{t_{0}\right\}: u \prec t_{0}\right\}\right)=g(\varnothing)=: t_{0} .
$$

Thus we've found $\left\{t_{0}\right\}$ to be a nice chain, and hence they always exist as long as X is non-empty!

Step 3.a: Let $a \in I_{A}(x)$ and suppose $a \notin B$. By the definition of $I_{A}(x), a \in A$, and $a \prec x$, which invalidates the definition of x being the smallest element of $A \backslash B$. Thus $a \in B$, and hence $I_{A}(x) \subseteq B$.

Step 3.b: First note that $I_{B}(y) \subsetneq B$ since $y \in B$, and $I_{B}(y)$ is everything that strictly precedes y. Now when comparing z and x we can compare them based on the sets they are drawn from: $A \backslash I_{B}(y)$ and $A \backslash B$ respectively. Since B strictly contains $I_{B}(y)$ we have $A \backslash B \subsetneq A \backslash I_{B}(y)$. Hence z must be at least as small as $x: z \preceq x$.

[^0]Step 3.c: We begin with $u \in I_{B}(y), v \in A$, and $v \prec u$. Immediately from $v \prec u$, $u \prec y$ (which comes from $u \in I_{B}(y)$), and the transitive property of \prec we have $v \prec y$. In order to show $u \in I_{A}(x)$ we must now show $u \in A$, and $u \prec x$. If we suppose $u \notin A$ then $u \prec y$ would contradict the definition of y being the smallest element in $B \backslash I_{A}(x)$ and thus $u \in A$. By the definition of x, everything in b precedes it, ${ }^{2}$ and hence $u \prec x$ putting $u \in I_{A}(x)$. Since $v \in A, v \prec u$, and $u \in I_{A}(x)$, we must have $v \in I_{A}(x)$ as well. Finally by Step 3.a $v \in B$, and since $v \prec y$ we also have $v \in I_{B}(y)$.

Step 3.d: To show $I_{A}(z) \subseteq I_{B}(y)$ recall Step 3.a where we show $I_{A}(x) \subseteq B$ combined with Step 3.b which shows $z \preceq x$ to combine to say $I_{A}(z) \subseteq B$. Then we must show that for all $a \in I_{A}(z)$ we have $a \prec y$. Since $a \in I_{A}(z)$ we have $a \prec z$, and by $z \preceq x$ we also have $a \prec x$. Finally because y is the least element in $B \backslash I_{A}(x)$ we must have $a \prec y$ in order to preserve the definition of y being the least element. Thus $I_{A}(z) \subseteq I_{B}(y)$. To go the other way take $b \in I_{B}(y)$. Since $b \prec y$ and y is the least element in $B \backslash I_{A}(x)$, $b \in A$ and $b \prec x$: that is $b \in I_{A}(x)$. We also have $b \neq z$ because.... By Step 3.c we cannot have $z \prec b$ since then $z \in I_{B}(y)$ which contradicts the definition of z as being the smallest element in $A \backslash I_{B}(y)$. Since $b \neq z$ and $z \nprec b$, we must have $z \succ b$. Finally this forces $b \in A$, and hence $b \in I_{A}(z)$. This means $I_{A}(z)=I_{B}(y)$.

Step 3.e: Let us first show that $z=y$ using the fact that A and B are nice chains (with respect to g).

$$
z=g(\{u \in A: u \prec z\})=g\left(I_{A}(z)\right)=g\left(I_{B}(y)\right)=g(\{u \in B: u \prec y\})=y
$$

Now we cannot have $z=x$ because if we did, then $y=x$ as well, but $x \in A \backslash B$, whereas $y \in B \backslash I_{A}(x)$. That is $x \notin B$, and $y \in B$. Thus $z \prec x$ and hence $z \in I_{A}(x)$, and by equality with $z, y \in I_{A}(x)$. This contradicts the definition of y being in $B \backslash I_{A}(x)$. This allows us to conclude that $I_{A}(x)=B$, and hence the definition of y is vacuous as $B \backslash I_{A}(x)=\varnothing$. Since we assumed $A \backslash B$ is non-empty, we have $B=\{u \in A: u \prec t\}$ for some $t \in A$. The third possibility would hold if we assumed $B \backslash A$ was non-empty.

Step 4: To see that T_{∞} is a chain, notice that all $t \in T_{\infty}$ must have come from a nice chain in $\mathcal{P}(X)$. So there exists a nice chain A containing t. By Step 3 all nice chains are either equal, or subsets of one another and hence "comparable". Now let $Z \subseteq T_{\infty}$, $z \in Z$, and let f (our choice function) pick a nice chain containing z, and call it A. The well-ordering of A means $A \cap Z$ has a least element a. To see a is a least element of Z, assume there is a $b \in \mathrm{Z}$ with $b \prec a$. Since $b \notin A$, it must be in some other nice chain $B \neq A$. We are now in a situation where A is not an initial segment of B and vice versa, contradiction the claim in Step 3. Thus a is the least element of Z and hence T_{∞} is well-ordered. Finally we are to prove T_{∞} is also nice. Let A be a nice chain with $z \in A$. We claim that

$$
\left\{u \in T_{\infty}: u \prec z\right\}=\{u \in A: u \prec z\} .
$$

Assume, by way of contradiction that this is not the case: that there is a $y \in T_{\infty}$ with $y \prec z$ such that $y \notin A$. We can then find another chain B containing y, and by the key claim in Step 3 we again have a situation where we have two chains that are not proper initial segments of one another. Thus the equality of sets is true. As we've defined g we then have

$$
z=g(\{u \in A: u \prec z\})=g\left(\left\{u \in T_{\infty}: u \prec z\right\}\right)
$$

and thus T_{∞} is niiiiice.

[^1]Step 5: Let $v:=g\left(T_{\infty}\right)$ and by the definition of $g, v \in \bar{T}$, and hence a strict upper bound for T_{∞}. We can then see $T_{\infty} \cup\{v\}$ is a nice chain because it is first a chain with $t \prec v$ for all $t \in T_{\infty}$, and it is nice because... well I'm not actually sure how we get $g(?)=v$. This is a contradiction because T_{∞} was supposed to be the union of all nice chains in $\mathcal{P}(X)$. Thus, our original assumption that X has no maximal elements is false, and X does contain at least one maximal element.

Problem 2: S-formulas

(a) Use induction to show that if S is a first-order alphabet and $\phi, \phi^{\prime} \in L^{S}$ then if ϕ is a prefix of ϕ^{\prime} then $\phi=\phi^{\prime}$. Show that this is no longer true if we use suffixes instead of prefixes.
(b) Show that if S is a first-order alphabet and $\phi_{1}, \ldots, \phi_{n}, \phi_{1}^{\prime}, \ldots, \phi_{m}^{\prime} \in L^{S}$ then if $\phi_{1} \cdots \phi_{n}=\phi_{1}^{\prime} \cdots \phi_{m}^{\prime}$ as words in L^{S} then $n=m$ and $\phi_{i}=\phi_{i}^{\prime}$ for $i=1, \ldots, n$.

Solution. (a) Let P be the property which holds for an S-formula φ if and only if for all S-formulas ψ, ψ is not a prefix of φ and φ is not a prefix of ψ. We now proceed by induction, and first the base case(s).

If $\phi=t_{1} \equiv t_{2}$ and ψ is a prefix of ϕ, then there exists an α such that $\phi=\psi \alpha$. Without loss of generality ${ }^{3}$ we can take $\psi=t_{1}^{\prime} \equiv t_{2}^{\prime}$ to have $t_{1} \equiv t_{2}=t_{1}^{\prime} \equiv t_{2}^{\prime} \alpha$. This equality implies $t_{1}=t_{1}^{\prime}$ and $t_{2}=t_{2}^{\prime} \alpha$. By Lemma 4.2(a) from the text, $\alpha=\square$ (the empty string), and hence $\psi \equiv \phi$. Thus S-formulas of the form $\phi=t_{1} \equiv t_{2}$ have property P.

If $\phi=R t_{1} \cdots t_{n}$ and ψ is a prefix of ϕ, then there exists an α such that $\phi=\psi \alpha$. Since the relation symbol is the first symbol we must have $\psi=R t_{1}^{\prime} \cdots t_{n}^{\prime}$. We then have $R t_{1} \cdots t_{n}=R t_{1}^{\prime} \cdots t_{n}^{\prime} \alpha$, and stripping away the relation ${ }^{4}$ we have $t_{1} \cdots t_{n}=t_{1}^{\prime} \cdots t_{n}^{\prime} \alpha$. Again by Lemma 4.2(a) from the text $\alpha=\square$ and $\psi \equiv \phi$. Thus S-formulas of the form $\phi=R t_{1} \cdots t_{n}$ have property P.

Moving on to the induction step we look at $\neg \phi$ which clearly has property P inheriting from ϕ, combined with the fact that \neg is not an S-formula. Next we look at S-formulas of the form $\phi * \psi$ where $*=\wedge, \vee, \rightarrow, \leftrightarrow$ where ϕ and ψ both enjoy the property P. Let χ be a prefix such that $\phi * \psi=\chi \alpha$. Since $*$ must appear on the right hand side it can either appear in χ or α. In the first case we have $\phi * \psi=\beta * \gamma \alpha$ and hence $\psi=\gamma \alpha$ forcing $\alpha=\square$ and $\psi=\gamma$. In the second case we have $\phi * \psi=\chi \beta * \gamma$ and hence $\phi=\chi \beta$ forcing $\beta=\square$ and $\phi=\chi$. Thus all S-formulas $\phi * \psi$ do not have S-formula-prefixes.

Finally we have $\forall x \phi$ and $\exists x \phi$ which enjoy P because $\forall x$ and $\exists x$ are not S-formulas, and ϕ enjoys P.
(b)

[^2]
Problem 3: Uniqueness decomposition

Let S be a first-order alphabet, $n \geq 1$, and $t_{1}, \ldots, t_{n} \in T^{S}$. If $w=t_{1} \cdots t_{n} \in S^{*}$. Show by induction that for each $i<|w|$, there is a unique term $t \in T^{S}$ and unique $v \in S^{*}$ such that $w=w[1 . . i] t v$.

Solution.

[^0]: ${ }^{1}$ I think this refers to the functions we work with in (a), but I don't think we ever defined what a choice function is.

[^1]: ${ }^{2}$ I'm not actually convinced of this, but I'm not sure what else to argue.

[^2]: ${ }^{3}$ is this true?
 ${ }^{4}$ Is this allowed? If so, by what means?

