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Problem 1: ZFC

(a) Let S be a set whose elements are non-empty sets and let T be the set that is
the union of the elements of S. Show using the axioms (of ZFC) that there is
a map f : S → T such that f (s) ∈ s for all s ∈ S. Hint: well-order T. Then
for s ∈ S consider s ∩ T. Now use the fact that T is well-ordered.

(b) Let X be a partially ordered set with partial order ≺. Suppose that all chains
in X have an upper bound. Show the existence of a choice function from (a)
that the set X has a maximal element with respect to ⪯.

Solution. (a) As suggested by the hint, well order T and consider the subset s ∩ T ⊆ T
for an arbitrary s ∈ S. Since T is well-ordered, this subset must have a least element
which we denote by smin. Now define our function f : S → T by f (s) := smin. By
the definition of smin, this is both in T (satisfying the correct range), and in s. Written
differently f (s) := smin ∈ s for all s ∈ S.

(b) Following the hint, we will proceed by contradiction and assume that all chains
in X have an upper bound, but X has not maximal element.

Step 1: Let f be a “choice function”’1 on non-empty subsets of P(X) (to X). For a
chain T denote by Upp(T) the set of upper bounds of T (in X) which, by assumption, is
non-empty. Let x = f (Upp(T)). We now show that there is a subset T ⊂ Upp(T) that
is non-empty and contains upper bounds that are not contained in T. With t ∈ Upp(T)
and the non-existence of maximal elements in X, there must exist a t′ ∈ X such that
t ≺ t′. While t could be in T or not, t′ is surely not in T as it is strictly “greater than” t,
and t is an upper bound. Thus, for every chain T, we have can find a non-empty set T
that contains strict upper bounds of said chain. Define g to be a function on chains in X
that chooses one such strict upper bounds: that is g(T) is an element of T. As noted in
the hint, we can take g(∅) = t0 for some t0 ∈ X since x ≺ t0 for all x ∈ ∅ vacuously.

Step 2: First note that {t0} is indeed a chain: t0 ⪯ t0 and hence all elements are
comparable. Substituting T = {t0} in the definition of a nice chain we have

g({u ∈ {t0} : u ≺ t0}) = g(∅) =: t0.

Thus we’ve found {t0} to be a nice chain, and hence they always exist as long as X is
non-empty!

Step 3.a: Let a ∈ IA(x) and suppose a /∈ B. By the definition of IA(x), a ∈ A, and
a ≺ x, which invalidates the definition of x being the smallest element of A \ B. Thus
a ∈ B, and hence IA(x) ⊆ B.

Step 3.b: First note that IB(y) ⊊ B since y ∈ B, and IB(y) is everything that strictly
precedes y. Now when comparing z and x we can compare them based on the sets they
are drawn from: A \ IB(y) and A \ B respectively. Since B strictly contains IB(y) we
have A \ B ⊊ A \ IB(y). Hence z must be at least as small as x: z ⪯ x.

1I think this refers to the functions we work with in (a), but I don’t think we ever defined what a
choice function is.
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Step 3.c: We begin with u ∈ IB(y), v ∈ A, and v ≺ u. Immediately from v ≺ u,
u ≺ y (which comes from u ∈ IB(y)), and the transitive property of ≺ we have v ≺ y.
In order to show u ∈ IA(x) we must now show u ∈ A, and u ≺ x. If we suppose u /∈ A
then u ≺ y would contradict the definition of y being the smallest element in B \ IA(x)
and thus u ∈ A. By the definition of x, everything in b precedes it,2 and hence u ≺ x
putting u ∈ IA(x). Since v ∈ A, v ≺ u, and u ∈ IA(x), we must have v ∈ IA(x) as well.
Finally by Step 3.a v ∈ B, and since v ≺ y we also have v ∈ IB(y).

Step 3.d: To show IA(z) ⊆ IB(y) recall Step 3.a where we show IA(x) ⊆ B combined
with Step 3.b which shows z ⪯ x to combine to say IA(z) ⊆ B. Then we must show
that for all a ∈ IA(z) we have a ≺ y. Since a ∈ IA(z) we have a ≺ z, and by z ⪯ x we
also have a ≺ x. Finally because y is the least element in B \ IA(x) we must have a ≺ y
in order to preserve the definition of y being the least element. Thus IA(z) ⊆ IB(y). To
go the other way take b ∈ IB(y). Since b ≺ y and y is the least element in B \ IA(x),
b ∈ A and b ≺ x: that is b ∈ IA(x). We also have b ̸= z because. . . . By Step 3.c we
cannot have z ≺ b since then z ∈ IB(y) which contradicts the definition of z as being
the smallest element in A \ IB(y). Since b ̸= z and z ⊀ b, we must have z ≻ b. Finally
this forces b ∈ A, and hence b ∈ IA(z). This means IA(z) = IB(y).

Step 3.e: Let us first show that z = y using the fact that A and B are nice chains
(with respect to g).

z = g({u ∈ A : u ≺ z}) = g(IA(z)) = g(IB(y)) = g({u ∈ B : u ≺ y}) = y

Now we cannot have z = x because if we did, then y = x as well, but x ∈ A \ B,
whereas y ∈ B \ IA(x). That is x /∈ B, and y ∈ B. Thus z ≺ x and hence z ∈ IA(x), and
by equality with z, y ∈ IA(x). This contradicts the definition of y being in B \ IA(x).
This allows us to conclude that IA(x) = B, and hence the definition of y is vacuous as
B \ IA(x) = ∅. Since we assumed A \ B is non-empty, we have B = {u ∈ A : u ≺ t}
for some t ∈ A. The third possibility would hold if we assumed B \ A was non-empty.

Step 4: To see that T∞ is a chain, notice that all t ∈ T∞ must have come from a nice
chain in P(X). So there exists a nice chain A containing t. By Step 3 all nice chains
are either equal, or subsets of one another and hence “comparable”. Now let Z ⊆ T∞,
z ∈ Z, and let f (our choice function) pick a nice chain containing z, and call it A. The
well-ordering of A means A ∩ Z has a least element a. To see a is a least element of Z,
assume there is a b ∈ Z with b ≺ a. Since b /∈ A, it must be in some other nice chain
B ̸= A. We are now in a situation where A is not an initial segment of B and vice versa,
contradiction the claim in Step 3. Thus a is the least element of Z and hence T∞ is
well-ordered. Finally we are to prove T∞ is also nice. Let A be a nice chain with z ∈ A.
We claim that

{u ∈ T∞ : u ≺ z} = {u ∈ A : u ≺ z}.

Assume, by way of contradiction that this is not the case: that there is a y ∈ T∞ with
y ≺ z such that y /∈ A. We can then find another chain B containing y, and by the key
claim in Step 3 we again have a situation where we have two chains that are not proper
initial segments of one another. Thus the equality of sets is true. As we’ve defined g we
then have

z = g({u ∈ A : u ≺ z}) = g({u ∈ T∞ : u ≺ z})
and thus T∞ is niiiiice.

2I’m not actually convinced of this, but I’m not sure what else to argue.
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Step 5: Let v := g(T∞) and by the definition of g, v ∈ T, and hence a strict upper
bound for T∞. We can then see T∞ ∪ {v} is a nice chain because it is first a chain with
t ≺ v for all t ∈ T∞, and it is nice because. . . well I’m not actually sure how we get
g(?) = v. This is a contradiction because T∞ was supposed to be the union of all nice
chains in P(X). Thus, our original assumption that X has no maximal elements is false,
and X does contain at least one maximal element.
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Problem 2: S-formulas

(a) Use induction to show that if S is a first-order alphabet and ϕ, ϕ′ ∈ LS then
if ϕ is a prefix of ϕ′ then ϕ = ϕ′. Show that this is no longer true if we use
suffixes instead of prefixes.

(b) Show that if S is a first-order alphabet and ϕ1, . . . , ϕn, ϕ′
1, . . . , ϕ′

m ∈ LS then if
ϕ1 · · · ϕn = ϕ′

1 · · · ϕ′
m as words in LS then n = m and ϕi = ϕ′

i for i = 1, . . . , n.

Solution. (a) Let P be the property which holds for an S-formula φ if and only if for all
S-formulas ψ, ψ is not a prefix of φ and φ is not a prefix of ψ. We now proceed by induction,
and first the base case(s).

If ϕ = t1 ≡ t2 and ψ is a prefix of ϕ, then there exists an α such that ϕ = ψα. Without
loss of generality3 we can take ψ = t′1 ≡ t′2 to have t1 ≡ t2 = t′1 ≡ t′2α. This equality
implies t1 = t′1 and t2 = t′2α. By Lemma 4.2(a) from the text, α = □ (the empty string),
and hence ψ ≡ ϕ. Thus S-formulas of the form ϕ = t1 ≡ t2 have property P.

If ϕ = Rt1 · · · tn and ψ is a prefix of ϕ, then there exists an α such that ϕ = ψα. Since
the relation symbol is the first symbol we must have ψ = Rt′1 · · · t′n. We then have
Rt1 · · · tn = Rt′1 · · · t′nα, and stripping away the relation4 we have t1 · · · tn = t′1 · · · t′nα.
Again by Lemma 4.2(a) from the text α = □ and ψ ≡ ϕ. Thus S-formulas of the form
ϕ = Rt1 · · · tn have property P.

Moving on to the induction step we look at ¬ϕ which clearly has property P
inheriting from ϕ, combined with the fact that ¬ is not an S-formula. Next we look
at S-formulas of the form ϕ ∗ ψ where ∗ = ∧,∨,→,↔ where ϕ and ψ both enjoy the
property P. Let χ be a prefix such that ϕ ∗ ψ = χα. Since ∗ must appear on the right
hand side it can either appear in χ or α. In the first case we have ϕ ∗ ψ = β ∗ γα and
hence ψ = γα forcing α = □ and ψ = γ. In the second case we have ϕ ∗ ψ = χβ ∗ γ
and hence ϕ = χβ forcing β = □ and ϕ = χ. Thus all S-formulas ϕ ∗ ψ do not have
S-formula-prefixes.

Finally we have ∀xϕ and ∃xϕ which enjoy P because ∀x and ∃x are not S-formulas,
and ϕ enjoys P.

(b)

3is this true?
4Is this allowed? If so, by what means?
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Problem 3: Uniqueness decomposition

Let S be a first-order alphabet, n ≥ 1, and t1, . . . , tn ∈ TS. If w = t1 · · · tn ∈ S∗.
Show by induction that for each i < |w|, there is a unique term t ∈ TS and unique
v ∈ S∗ such that w = w[1..i]tv.

Solution.

5


	Problem 1
	Problem 2
	Problem 3

