Logic and Computability Assignment 2

Name: Nate Stemen (20906566) Email: nate@stemen.email **Due:** Jan 28, 2022 11:59PM **Course:** PMATH 632

Problem 1: Truth functions

(a) Prove DeMorgan's law:

$$\dot{\wedge}(x,y) = \dot{\neg}(\dot{\vee}(\dot{\neg}(x),\dot{\neg}(y)))$$

for all $x, y \in \{\mathsf{T}, \mathsf{F}\}$.

- (b) Show that one can similarly express $\rightarrow(x, y)$ and $\leftrightarrow(x, y)$ in terms of the functions \neg and \lor .
- (c) Express contraposition as a statement about \rightarrow and $\dot{\rightarrow}$ and $\dot{\leftrightarrow}$.

Solution. (a) DeMorgan's law can be seen by building up the right hand side of the equality from it's components.

x	y	$\dot{\neg}(x)$	$\dot{\neg}(y)$	$\dot{\lor}(\dot{\neg}(x),\dot{\neg}(y))$	$\dot{\neg}(\dot{\lor}(\dot{\neg}(x),\dot{\neg}(y)))$	$\dot{\wedge}(x,y)$
Т	Т	F	F	F	Т	Т
Т	F	F	Т	Т	F	F
F	Т	Т	F	Т	F	F
F	F	Т	Т	Т	F	F

(b) We give the following two characterizations by truth tables for implication and the biconditional.

			x y	$\dot{\neg}(x)$	$\dot{\lor}(\dot{\neg}(x),y)$	$\rightarrow(x,y)$		
			ТТ	F	Т	Т		
			ΤF	F	F	F		
			FΤ	Т	Т	Т		
			FΕ	Т	Т	Т		
x	y	$\dot{\wedge}(x,y)$	$\dot{\wedge}(\dot{\neg}(x$	$), \dot{\neg}(y))$	$\dot{\lor}(\dot{\land}(x,y))$	$\dot{\wedge}(\dot{\neg}(x),\dot{\neg})$	(y)))	$\leftrightarrow(x,y)$
Т	Т	Т		F		Т		Т
Т	F	F	F			F		F
		1				•		
F	Ť	F		F		F		F

Now since we must use only negation and disjunction we can use DeMorgan's law to write the following.

$$\begin{split} \dot{\leftrightarrow}(x,y) &= \dot{\vee}(\dot{\wedge}(x,y), \dot{\wedge}(\dot{\neg}(x), \dot{\neg}(y))) \\ &= \dot{\vee}(\dot{\neg}(\dot{\vee}(\dot{\neg}(x), \dot{\neg}(y))), \dot{\neg}(\dot{\vee}(\dot{\neg}(\dot{\neg}(x)), \dot{\neg}(\dot{\neg}(y))))) \\ &= \dot{\vee}(\dot{\neg}(\dot{\vee}(\dot{\neg}(x), \dot{\neg}(y))), \dot{\neg}(\dot{\vee}(x,y))) \end{split}$$

Where we've used the contentious¹ idea that negation is an involution.

¹Okay, maybe not that contentious, but some people don't like it, right?

(c) When attempting to prove $p \implies q$ we can sometimes try and prove $\neg q \implies \neg p$. This can be encoded into the following tautology using \leftrightarrow , \neg , and \rightarrow .

$$\leftrightarrow (\rightarrow (x, y), \rightarrow (\neg (y), \neg (x)))$$

To see this is indeed a tautology we can use our expressions above to simplify.

$$\begin{array}{l} \leftrightarrow(\dot{\rightarrow}(x,y),\dot{\rightarrow}(\dot{\neg}(y),\dot{\neg}(x))) \\ &= \dot{\lor}(\dot{\neg}(\dot{\lor}(\dot{\neg}(x),y)),\dot{\neg}(\dot{\lor}(y,\dot{\neg}(x))))),\dot{\neg}(\dot{\lor}(\dot{\lor}(\dot{\neg}(x),y),\dot{\lor}(y,\dot{\neg}(x))))) \end{array}$$

Now define $A := \dot{\lor}(\dot{\neg}(x), y) = \dot{\lor}(y, \dot{\neg}(x))$ where the last equality holds by the symmetry of or. We now have

$$\begin{split} \leftrightarrow(\dot{\rightarrow}(x,y),\dot{\rightarrow}(\dot{\neg}(y),\dot{\neg}(x))) &= \dot{\lor}(\dot{\neg}(\dot{\lor}(\dot{\neg}(A),\dot{\neg}(A))),\dot{\neg}(\dot{\lor}(A,A))) \\ &= \dot{\lor}(\dot{\neg}(\dot{\neg}(A)),\dot{\neg}(A)) \\ &= \dot{\lor}(A,\dot{\neg}(A)). \end{split}$$

We've now reached the infamous law of excluded middle which we take to be true, always. Thus we have a tautology, and hence proof by contraposition is a valid proof (if you take LEM).

Problem 2

Let *S* be the first-order alphabet $\{R_1, R_2, f\}$ in which R_1 and R_2 are unary relation symbols and *f* is a binary function symbol. Suppose $\mathcal{A} = (A, \mathfrak{a})$ is an *S*-structure and that $\mathcal{J} = (\mathcal{A}, \beta)$ is an *S*-interpretation and Φ is the set of formulas $\{\phi_1, \phi_2, \phi_3, \phi_4\}$ with

$$\begin{split} \phi_1 &= \exists v_0 \exists v_1 ((R_1 v_0 \land R_1 v_1) \land \neg v_0 \equiv v_1) \\ \phi_2 &= \exists v_0 \exists v_1 ((R_2 v_0 \land R_2 v_1) \land \neg v_0 \equiv v_1) \\ \phi_3 &= \forall v_0 \exists v_1 \exists v_2 ((R_1 v_1 \land R_2 v_2) \land f v_1 v_2 \equiv v_0) \\ \phi_4 &= \forall v_1 \forall v_2 \forall v_3 \forall v_4 (((((R_1 v_1 \land R_1 v_2) \land R_2 v_3) \land R_2 v_4) \land f v_1 v_3 \equiv f v_2 v_4) \\ &\rightarrow (v_1 \equiv v_2 \land v_3 \equiv v_4)). \end{split}$$

- (a) Show that if $\mathcal{J} \models \Phi$ and |A| is finite then |A| is a composite number (i.e., not prime and not 1).
- (b) Show that if $|A| < \infty$ is composite then there is an *S*-interpretation \mathcal{J} with universe *A* such that $\mathcal{J} \models \mathbf{\Phi}$.

Solution. (a) We first interpret each equation ϕ_i given we know |A| is finite.

$$\phi_1 = \exists v_0, v_1 \in A \quad R_1^A v_0 \text{ and } R_1^A v_1 \text{ and } v_1 \neq v_0$$

Thus ϕ_1 is telling us there are *at least* two distinct elements that satisfy the relation R_1^A . Put differently, since $R_1^A \subseteq A$, we know $|R_1^A| \ge 2$. Similarly for ϕ_2 we have

$$\phi_2 = \exists v_0, v_1 \in A \quad R_2^A v_0 \text{ and } R_2^A v_1 \text{ and } v_1 \neq v_0$$

where again this is telling us that $|R_2^A| \ge 2$, or that there are at least two elements that satisfy R_2^A . Moving on for ϕ_3 we have

$$\phi_3=orall v_0\in A\quad \exists v_1,v_2\in A\quad R_1^Av_2 ext{ and } R_2^Av_2 ext{ and } f^A(v_1,v_2)=v_0.$$

This formula tells us that $f^A : A \times A \to A$ when restricted to $R_1^A \times R_2^A$ is a surjection onto *A*. That is $f^A|_{R_1^A \times R_2^A}$ is a surjection. Lastly we have

$$\phi_4 = \forall v_1, v_2, v_3, v_4 \in A \quad v_1, v_2 \in R_1^A \text{ and } v_3, v_4 \in R_2^A \text{ and } f^A(v_1, v_3) = f^A(v_2, v_4)$$

imply $v_1 = v_2$ and $v_3 = v_4$.

This is exactly the condition for $f^A|_{R_1^A \times R_2^A}$ being injective. This fact, together with the previous one implies f^A is a bijection, and hence the domain and range have the same cardinality: $|R_1^A \times R_2^A| = |A|$. A basic property about the cardinality of finite sites *B* and *C* is $|B \times C| = |B| \cdot |C|$.² We then have $|A| = |R_1^A| \cdot |R_2^A|$ and hence a composite number.

²Maybe this holds for larger cardinals too, but I'm not familiar enough to say.

(b) Now take $|A| = n \cdot m$ with $n, m \in \mathbb{N}$ such that $n, m \neq 1$. Arrange the elements of A in a grid as follows (in arbitrary order) and give each element a name based on it's grid position.

Then form the following two (intersecting) subsets of *A*.

These can be written $B = \{a_{1j} \in A : 1 \le j \le m\}$, and $C = \{a_{i1} \in A : 1 \le i \le n\}$. Since n, m > 1 each one of these subsets must have more than one element in each. That is |B| > 1 and |C| > 1. We can then take B and C to be relations on A and hence ϕ_1 and ϕ_2 are automatically satisfied with $R_1^A = B$ and $R_2^A = C$. Next we define $f^A : B \times C \to A$ as

$$f(b,c) = f(a_{1j},a_{i1}) \coloneqq a_{ij}.$$

This is clearly a bijection from $B \times C$ to A, and hence ϕ_3 and ϕ_4 are also satisfied. Hence we have constructed an $\{R_1, R_2, f\}$ -structure where $\mathcal{J} \models \mathbf{\Phi}$.

Problem 3

In the following questions, let $S_{gr} = (1, \cdot, i)$ and we only consider S_{gr} interpretations $\mathcal{J} = (A, \mathfrak{a}, \beta)$ in which A is a group, 1^A is the identity of A, \cdot^A is multiplication, and i^A is the inverse map. For the following formulas ϕ give an informal statement of what the formula is saying and say whether $\mathcal{J} \models \phi$ for every such interpretation \mathcal{J} , for at least one such interpretation but not every such interpretation, or for no such interpretations.

(a) $\forall v_0 \forall v_1 \forall v_2 \cdot \cdot v_0 v_1 v_2 \equiv \cdot v_0 \cdot v_1 v_2$

(b)
$$\forall v_0 \forall v_1 \cdots v_0 v_1 v_1 \equiv \cdots v_1 v_0 v_1$$

- (c) $\exists v_0((\neg v_0 \equiv 1) \land \cdot v_0 v_0 \equiv 1)$
- (d) $\exists v_0 \forall v_1 v_2 \equiv \cdot v_0 v_1$
- (e) $\exists v_0 \exists v_1 v_2 \equiv \cdot v_0 v_1$
- (f) $\exists v_0 \exists v_1 (\neg v_0 \equiv v_1 \lor \forall v_3 v_3 \equiv 1)$
- (g) $\exists v_3(\cdot v_3v_2 \equiv 1 \land \neg v_3 \equiv iv_2)$
- (h) $\forall v_0((\cdot v_0 v_0 \equiv 1 \land \cdots \lor v_0 v_0 v_0 \equiv 1) \rightarrow v_0 \equiv 1)$

Solution. First, here is a summary of my solutions, with more details expounded in each part.

_	Part	Holds for _	interpretations
	(a)		all
	(b)		some
	(c)		some
	(d)		some
	(e)		all
	(f)		all
	(g)		no
	(h)		all

(a) Written in infix notation this equation reads

$$\forall v_0, v_1, v_2 \in A \quad (v_0 \cdot v_1) \cdot v_2 = v_0 \cdot (v_1 \cdot v_2)$$

which clearly shows that the multiplication in the group is associative. This facts holds for every such interpretation \mathcal{J} by the definition of group multiplication.

(b) Again, writing in infix notation we have

$$\forall v_0, v_1 \in A \quad (v_0 \cdot v_1) \cdot v_1 = (v_1 \cdot v_0) \cdot v_1$$

Multiplying on thr right by v_1^{-1} we have $v_0 \cdot v_1 = v_1 \cdot v_0$ which is clearly only true in Abelian groups. The existence of non-Abelian groups (e.g. the permutation group) shows this formula holds in at least one such interpretation \mathcal{J} .

(c) In everyday math notation we might write

$$\exists v_0 \in A \quad v_0 \neq 1^A \text{ and } v_0^2 = 1^A.$$

This formula holds for at least one interpretation, but not necessarily all. To see this take the trivial group $G = (\{e\}, \cdot)$ where the only multiplication rule we have is

 $e \cdot e = e$. Since *G* is a group where this formula does not hold it cannot hold in all interpretations. That said the group $H = (\{1, -1\}, \cdot_{\mathbb{R}})$ is a group where this formula holds with $v_0 = -1$.

(d) Here we have

$$\exists v_0 \in A \ \forall v_1 \in A \quad v_2 = v_0 \cdot v_1.$$

This can be found to hold, for example, in the trivial group $G = (\{e\}, \cdot)$. We then have $v_0, v_1, v_2 = e$ and the equation reads $e = e \cdot e$ which clearly holds. That said this equation does not hold in all interpretations. To see this take the group $H = (\{1, -1\}, \cdot_{\mathbb{R}})$. Now take $v_2 = 1$ and the equation says either $1 = 1 \cdot -1 \wedge 1 = 1 \cdot 1$ or $1 = -1 \cdot -1 \wedge 1 = -1 \cdot 1$ which clearly neither hold.

(e) Here we have

$$\exists v_0, v_1 \in A \quad v_2 = v_0 \cdot v_1.$$

This can be found to hold in all interpretations by taking $v_0 = v_2$ and $v_1 = 1^A$.

(f)

 $\exists v_0, v_1 \in A \quad v_0 \neq v_1 \text{ or } \forall v_3 \in A \quad v_3 = 1^A$

This formula says you either have

- two distinct elements in the group, or
- all elements in your group are the identity element.

And this holds for all interpretations \mathcal{J} .

(g) Here we use the notation g^{-1} instead of $i^A(g)$ for familiarity.

$$\exists v_3 \in A \quad v_3 \cdot v_2 = 1^A \text{ and } v_3 \neq v_2^{-1}$$

This formula does not hold in any such interpretation \mathcal{J} because of the uniqueness of (left and right) inverses in groups.

(h) Finally, in modern notation we have:

$$\forall v_0 \in A \quad v_0^2 = 1^A \text{ and } v_0^3 = 1^A \implies v_0 = 1^A.$$

This formula holds for all such interpretations \mathcal{J} as follows. We can write $v_0^3 = v_0 \cdot v_0^2 = v_0 \cdot 1^A = v_0 = 1^A$. This manipulation does not use anything about a particular group and so this formula holds for all such interpretations \mathcal{J} .