Logic and Computability Assignment 2

Name: Nate Stemen (20906566)
Due: Jan 28, 2022 11:59PM
Email: nate@stemen.email
Course: PMATH 632

Problem 1: Truth functions

(a) Prove DeMorgan's law:

$$
\wedge(x, y)=\dot{\neg}(\dot{V}(\dot{\neg}(x), \dot{\neg}(y)))
$$

for all $x, y \in\{\mathrm{~T}, \mathrm{~F}\}$.
(b) Show that one can similarly express $\dot{\rightarrow}(x, y)$ and $\dot{\leftrightarrow}(x, y)$ in terms of the functions \neg and $\dot{\vee}$.
(c) Express contraposition as a statement about $\dot{\rightarrow}$ and $\dot{\neg}$ and $\dot{\leftrightarrow}$.

Solution. (a) DeMorgan's law can be seen by building up the right hand side of the equality from it's components.

x	y	$\dot{\neg}(x)$	$\dot{\neg}(y)$	$\dot{\vee}(\dot{\neg}(x), \dot{\neg}(y))$	$\dot{\neg}(\dot{\vee}(\dot{\neg}(x), \dot{\neg}(y)))$	$\wedge(x, y)$
T	T	F	F	F	T	T
T	F	F	T	T	F	F
F	T	T	F	T	F	F
F	F	T	T	T	F	F

(b) We give the following two characterizations by truth tables for implication and the biconditional.

Now since we must use only negation and disjunction we can use DeMorgan's law to write the following.

$$
\begin{aligned}
\dot{\leftrightarrow}(x, y) & =\dot{V}(\wedge(x, y), \wedge(\dot{\neg}(x), \dot{\neg}(y))) \\
& =\dot{V}(\dot{\neg}(\dot{V}(\dot{\neg}(x), \dot{\neg}(y))), \dot{\neg}(\dot{V}(\dot{\neg}(\dot{\neg}(x)), \dot{\neg}(\dot{\neg}(y))))) \\
& =\dot{V}(\dot{\neg}(\dot{V}(\dot{\neg}(x), \dot{\neg}(y))), \dot{\neg}(\dot{V}(x, y)))
\end{aligned}
$$

Where we've used the contentious ${ }^{1}$ idea that negation is an involution.

[^0](c) When attempting to prove $p \Longrightarrow q$ we can sometimes try and prove $\neg q \Longrightarrow \neg p$. This can be encoded into the following tautology using $\dot{\rightarrow}, \dot{\neg}$, and $\dot{\rightarrow}$.
$$
\dot{\leftrightarrow}(\dot{\rightarrow}(x, y), \dot{\rightarrow}(\dot{\neg}(y), \dot{\neg}(x)))
$$

To see this is indeed a tautology we can use our expressions above to simplify.

$$
\begin{aligned}
& \dot{\leftrightarrow}(\dot{\rightarrow}(x, y), \dot{\rightarrow}(\dot{\neg}(y), \dot{\neg}(x))) \\
& \quad=\dot{\mathrm{V}}(\dot{\neg}(\dot{\mathrm{~V}}(\dot{\neg}(\dot{\mathrm{~V}}(\dot{\neg}(x), y)), \dot{\neg}(\dot{\mathrm{V}}(y, \dot{\neg}(x))))), \dot{\neg}(\dot{\mathrm{V}}(\dot{\mathrm{~V}}(\dot{\neg}(x), y), \dot{\mathrm{V}}(y, \dot{\neg}(x)))))
\end{aligned}
$$

Now define $A:=\dot{V}(\dot{\neg}(x), y)=\dot{V}(y, \dot{\neg}(x))$ where the last equality holds by the symmetry of or. We now have

$$
\begin{aligned}
\dot{\leftrightarrow}(\dot{\rightarrow}(x, y), \dot{\rightarrow}(\dot{\neg}(y), \dot{\neg}(x))) & =\dot{V}(\dot{\neg}(\dot{V}(\dot{\neg}(A), \dot{\neg}(A))), \dot{\neg}(\dot{V}(A, A))) \\
& =\dot{V}(\dot{\neg}(\dot{\neg}(A)), \dot{\neg}(A)) \\
& =\dot{V}(A, \dot{\neg}(A)) .
\end{aligned}
$$

We've now reached the infamous law of excluded middle which we take to be true, always. Thus we have a tautology, and hence proof by contraposition is a valid proof (if you take LEM).

Problem 2

Let S be the first-order alphabet $\left\{R_{1}, R_{2}, f\right\}$ in which R_{1} and R_{2} are unary relation symbols and f is a binary function symbol. Suppose $\mathcal{A}=(A, \mathfrak{a})$ is an S-structure and that $\mathcal{J}=(\mathcal{A}, \beta)$ is an S-interpretation and $\boldsymbol{\Phi}$ is the set of formulas $\left\{\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}\right\}$ with

$$
\begin{aligned}
\phi_{1}= & \exists v_{0} \exists v_{1}\left(\left(R_{1} v_{0} \wedge R_{1} v_{1}\right) \wedge \neg v_{0} \equiv v_{1}\right) \\
\phi_{2}= & \exists v_{0} \exists v_{1}\left(\left(R_{2} v_{0} \wedge R_{2} v_{1}\right) \wedge \neg v_{0} \equiv v_{1}\right) \\
\phi_{3}= & \forall v_{0} \exists v_{1} \exists v_{2}\left(\left(R_{1} v_{1} \wedge R_{2} v_{2}\right) \wedge f v_{1} v_{2} \equiv v_{0}\right) \\
\phi_{4}= & \forall v_{1} \forall v_{2} \forall v_{3} \forall v_{4}\left(\left(\left(\left(\left(R_{1} v_{1} \wedge R_{1} v_{2}\right) \wedge R_{2} v_{3}\right) \wedge R_{2} v_{4}\right) \wedge f v_{1} v_{3} \equiv f v_{2} v_{4}\right)\right. \\
& \left.\rightarrow\left(v_{1} \equiv v_{2} \wedge v_{3} \equiv v_{4}\right)\right) .
\end{aligned}
$$

(a) Show that if $\mathcal{J} \vDash \boldsymbol{\Phi}$ and $|A|$ is finite then $|A|$ is a composite number (i.e., not prime and not 1).
(b) Show that if $|A|<\infty$ is composite then there is an S-interpretation \mathcal{J} with universe A such that $\mathcal{J} \vDash \boldsymbol{\Phi}$.

Solution. (a) We first interpret each equation ϕ_{i} given we know $|A|$ is finite.

$$
\phi_{1}=\exists v_{0}, v_{1} \in A \quad R_{1}^{A} v_{0} \text { and } R_{1}^{A} v_{1} \text { and } v_{1} \neq v_{0}
$$

Thus ϕ_{1} is telling us there are at least two distinct elements that satisfy the relation R_{1}^{A}. Put differently, since $R_{1}^{A} \subseteq A$, we know $\left|R_{1}^{A}\right| \geq 2$. Similarly for ϕ_{2} we have

$$
\phi_{2}=\exists v_{0}, v_{1} \in A \quad R_{2}^{A} v_{0} \text { and } R_{2}^{A} v_{1} \text { and } v_{1} \neq v_{0}
$$

where again this is telling us that $\left|R_{2}^{A}\right| \geq 2$, or that there are at least two elements that satisfy R_{2}^{A}. Moving on for ϕ_{3} we have

$$
\phi_{3}=\forall v_{0} \in A \quad \exists v_{1}, v_{2} \in A \quad R_{1}^{A} v_{2} \text { and } R_{2}^{A} v_{2} \text { and } f^{A}\left(v_{1}, v_{2}\right)=v_{0}
$$

This formula tells us that $f^{A}: A \times A \rightarrow A$ when restricted to $R_{1}^{A} \times R_{2}^{A}$ is a surjection onto A. That is $\left.f^{A}\right|_{R_{1}^{A} \times R_{2}^{A}}$ is a surjection. Lastly we have

$$
\begin{array}{r}
\phi_{4}=\forall v_{1}, v_{2}, v_{3}, v_{4} \in A \quad v_{1}, v_{2} \in R_{1}^{A} \text { and } v_{3}, v_{4} \in R_{2}^{A} \text { and } f^{A}\left(v_{1}, v_{3}\right)=f^{A}\left(v_{2}, v_{4}\right) \\
\text { imply } v_{1}=v_{2} \text { and } v_{3}=v_{4} .
\end{array}
$$

This is exactly the condition for $\left.f^{A}\right|_{R_{1}^{A} \times R_{2}^{A}}$ being injective. This fact, together with the previous one implies f^{A} is a bijection, and hence the domain and range have the same cardinality: $\left|R_{1}^{A} \times R_{2}^{A}\right|=|A|$. A basic property about the cardinality of finite sites B and C is $|B \times C|=|B| \cdot|C| \cdot{ }^{2}$ We then have $|A|=\left|R_{1}^{A}\right| \cdot\left|R_{2}^{A}\right|$ and hence a composite number.

[^1](b) Now take $|A|=n \cdot m$ with $n, m \in \mathbb{N}$ such that $n, m \neq 1$. Arrange the elements of A in a grid as follows (in arbitrary order) and give each element a name based on it's grid position.

Then form the following two (intersecting) subsets of A.

These can be written $B=\left\{a_{1 j} \in A: 1 \leq j \leq m\right\}$, and $C=\left\{a_{i 1} \in A: 1 \leq i \leq n\right\}$. Since $n, m>1$ each one of these subsets must have more than one element in each. That is $|B|>1$ and $|C|>1$. We can then take B and C to be relations on A and hence ϕ_{1} and ϕ_{2} are automatically satisfied with $R_{1}^{A}=B$ and $R_{2}^{A}=C$. Next we define $f^{A}: B \times C \rightarrow A$ as

$$
f(b, c)=f\left(a_{1 j}, a_{i 1}\right):=a_{i j} .
$$

This is clearly a bijection from $B \times C$ to A, and hence ϕ_{3} and ϕ_{4} are also satisfied. Hence we have constructed an $\left\{R_{1}, R_{2}, f\right\}$-structure where $\mathcal{J} \vDash \boldsymbol{\Phi}$.

Problem 3

In the following questions, let $S_{\mathrm{gr}}=(1, \cdot, i)$ and we only consider $S_{\mathrm{gr}}{ }^{-}$ interpretations $\mathcal{J}=(A, \mathfrak{a}, \beta)$ in which A is a group, 1^{A} is the identity of A, . ${ }^{A}$ is multiplication, and i^{A} is the inverse map. For the following formulas ϕ give an informal statement of what the formula is saying and say whether $\mathcal{J} \vDash \phi$ for every such interpretation \mathcal{J}, for at least one such interpretation but not every such interpretation, or for no such interpretations.
(a) $\forall v_{0} \forall v_{1} \forall v_{2} \cdot v_{0} v_{1} v_{2} \equiv \cdot v_{0} \cdot v_{1} v_{2}$
(b) $\forall v_{0} \forall v_{1} \cdots v_{0} v_{1} v_{1} \equiv \cdots v_{1} v_{0} v_{1}$
(c) $\exists v_{0}\left(\left(\neg v_{0} \equiv 1\right) \wedge \cdot v_{0} v_{0} \equiv 1\right)$
(d) $\exists v_{0} \forall v_{1} v_{2} \equiv \cdot v_{0} v_{1}$
(e) $\exists v_{0} \exists v_{1} v_{2} \equiv \cdot v_{0} v_{1}$
(f) $\exists v_{0} \exists v_{1}\left(\neg v_{0} \equiv v_{1} \vee \forall v_{3} v_{3} \equiv 1\right)$
(g) $\exists v_{3}\left(\cdot v_{3} v_{2} \equiv 1 \wedge \neg v_{3} \equiv i v_{2}\right)$
(h) $\forall v_{0}\left(\left(\cdot v_{0} v_{0} \equiv 1 \wedge \cdots v_{0} v_{0} v_{0} \equiv 1\right) \rightarrow v_{0} \equiv 1\right)$

Solution. First, here is a summary of my solutions, with more details expounded in each part.

Part	Holds for
(a)	interpretations
(b)	all
(c)	some
(d)	some
(e)	some
(f)	all
(g)	all
(h)	no
	all

(a) Written in infix notation this equation reads

$$
\forall v_{0}, v_{1}, v_{2} \in A \quad\left(v_{0} \cdot v_{1}\right) \cdot v_{2}=v_{0} \cdot\left(v_{1} \cdot v_{2}\right)
$$

which clearly shows that the multiplication in the group is associative. This facts holds for every such interpretation \mathcal{J} by the definition of group multiplication.
(b) Again, writing in infix notation we have

$$
\forall v_{0}, v_{1} \in A \quad\left(v_{0} \cdot v_{1}\right) \cdot v_{1}=\left(v_{1} \cdot v_{0}\right) \cdot v_{1}
$$

Multiplying on thr right by v_{1}^{-1} we have $v_{0} \cdot v_{1}=v_{1} \cdot v_{0}$ which is clearly only true in Abelian groups. The existence of non-Abelian groups (e.g. the permutation group) shows this formula holds in at least one such interpretation \mathcal{J}.
(c) In everyday math notation we might write

$$
\exists v_{0} \in A \quad v_{0} \neq 1^{A} \text { and } v_{0}^{2}=1^{A} .
$$

This formula holds for at least one interpretation, but not necessarily all. To see this take the trivial group $G=(\{e\}, \cdot)$ where the only multiplication rule we have is
$e \cdot e=e$. Since G is a group where this formula does not hold it cannot hold in all interpretations. That said the group $H=(\{1,-1\}, \cdot \mathbb{R})$ is a group where this formula holds with $v_{0}=-1$.
(d) Here we have

$$
\exists v_{0} \in A \forall v_{1} \in A \quad v_{2}=v_{0} \cdot v_{1} .
$$

This can be found to hold, for example, in the trivial group $G=(\{e\}, \cdot)$. We then have $v_{0}, v_{1}, v_{2}=e$ and the equation reads $e=e \cdot e$ which clearly holds. That said this equation does not hold in all interpretations. To see this take the group $H=(\{1,-1\}, \cdot \mathbb{R})$. Now take $v_{2}=1$ and the equation says either $1=1 \cdot-1 \wedge 1=1 \cdot 1$ or $1=-1 \cdot-1 \wedge 1=-1 \cdot 1$ which clearly neither hold.
(e) Here we have

$$
\exists v_{0}, v_{1} \in A \quad v_{2}=v_{0} \cdot v_{1} .
$$

This can be found to hold in all interpretations by taking $v_{0}=v_{2}$ and $v_{1}=1^{A}$.

$$
\begin{equation*}
\exists v_{0}, v_{1} \in A \quad v_{0} \neq v_{1} \text { or } \forall v_{3} \in A \quad v_{3}=1^{A} \tag{f}
\end{equation*}
$$

This formula says you either have

- two distinct elements in the group, or
- all elements in your group are the identity element.

And this holds for all interpretations \mathcal{J}.
(g) Here we use the notation g^{-1} instead of $i^{A}(g)$ for familiarity.

$$
\exists v_{3} \in A \quad v_{3} \cdot v_{2}=1^{A} \text { and } v_{3} \neq v_{2}^{-1}
$$

This formula does not hold in any such interpretation \mathcal{J} because of the uniqueness of (left and right) inverses in groups.
(h) Finally, in modern notation we have:

$$
\forall v_{0} \in A \quad v_{0}^{2}=1^{A} \text { and } v_{0}^{3}=1^{A} \Longrightarrow v_{0}=1^{A}
$$

This formula holds for all such interpretations \mathcal{J} as follows. We can write $v_{0}^{3}=v_{0} \cdot v_{0}^{2}=$ $v_{0} \cdot 1^{A}=v_{0}=1^{A}$. This manipulation does not use anything about a particular group and so this formula holds for all such interpretations \mathcal{J}.

[^0]: ${ }^{1}$ Okay, maybe not that contentious, but some people don't like it, right?

[^1]: ${ }^{2}$ Maybe this holds for larger cardinals too, but I'm not familiar enough to say.

