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Problem 1: Truth functions

(a) Prove DeMorgan’s law:

∧̇(x, y) = ¬̇(∨̇(¬̇(x), ¬̇(y)))

for all x, y ∈ {T,F}.
(b) Show that one can similarly express →̇(x, y) and ↔̇(x, y) in terms of the

functions ¬̇ and ∨̇.
(c) Express contraposition as a statement about →̇ and ¬̇ and ↔̇.

Solution. (a) DeMorgan’s law can be seen by building up the right hand side of the
equality from it’s components.

x y ¬̇(x) ¬̇(y) ∨̇(¬̇(x), ¬̇(y)) ¬̇(∨̇(¬̇(x), ¬̇(y))) ∧̇(x, y)

T T F F F T T
T F F T T F F
F T T F T F F
F F T T T F F

(b) We give the following two characterizations by truth tables for implication and
the biconditional.

x y ¬̇(x) ∨̇(¬̇(x), y) →̇(x, y)

T T F T T
T F F F F
F T T T T
F F T T T

x y ∧̇(x, y) ∧̇(¬̇(x), ¬̇(y)) ∨̇(∧̇(x, y), ∧̇(¬̇(x), ¬̇(y))) ↔̇(x, y)

T T T F T T
T F F F F F
F T F F F F
F F F T T T

Now since we must use only negation and disjunction we can use DeMorgan’s law to
write the following.

↔̇(x, y) = ∨̇(∧̇(x, y), ∧̇(¬̇(x), ¬̇(y)))
= ∨̇(¬̇(∨̇(¬̇(x), ¬̇(y))), ¬̇(∨̇(¬̇(¬̇(x)), ¬̇(¬̇(y)))))
= ∨̇(¬̇(∨̇(¬̇(x), ¬̇(y))), ¬̇(∨̇(x, y)))

Where we’ve used the contentious1 idea that negation is an involution.

1Okay, maybe not that contentious, but some people don’t like it, right?
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(c) When attempting to prove p =⇒ q we can sometimes try and prove ¬q =⇒ ¬p.
This can be encoded into the following tautology using ↔̇, ¬̇, and →̇.

↔̇(→̇(x, y), →̇(¬̇(y), ¬̇(x)))

To see this is indeed a tautology we can use our expressions above to simplify.

↔̇(→̇(x, y), →̇(¬̇(y), ¬̇(x)))
= ∨̇(¬̇(∨̇(¬̇(∨̇(¬̇(x), y)), ¬̇(∨̇(y, ¬̇(x))))), ¬̇(∨̇(∨̇(¬̇(x), y), ∨̇(y, ¬̇(x)))))

Now define A := ∨̇(¬̇(x), y) = ∨̇(y, ¬̇(x)) where the last equality holds by the symme-
try of or. We now have

↔̇(→̇(x, y), →̇(¬̇(y), ¬̇(x))) = ∨̇(¬̇(∨̇(¬̇(A), ¬̇(A))), ¬̇(∨̇(A, A)))

= ∨̇(¬̇(¬̇(A)), ¬̇(A))

= ∨̇(A, ¬̇(A)).

We’ve now reached the infamous law of excluded middle which we take to be true,
always. Thus we have a tautology, and hence proof by contraposition is a valid proof
(if you take LEM).
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Problem 2
Let S be the first-order alphabet {R1, R2, f } in which R1 and R2 are unary re-
lation symbols and f is a binary function symbol. Suppose A = (A, a) is an
S-structure and that J = (A, β) is an S-interpretation and Φ is the set of formu-
las {ϕ1, ϕ2, ϕ3, ϕ4} with

ϕ1 = ∃v0∃v1((R1v0 ∧ R1v1) ∧ ¬v0 ≡ v1)

ϕ2 = ∃v0∃v1((R2v0 ∧ R2v1) ∧ ¬v0 ≡ v1)

ϕ3 = ∀v0∃v1∃v2((R1v1 ∧ R2v2) ∧ f v1v2 ≡ v0)

ϕ4 = ∀v1∀v2∀v3∀v4(((((R1v1 ∧ R1v2) ∧ R2v3) ∧ R2v4) ∧ f v1v3 ≡ f v2v4)

→ (v1 ≡ v2 ∧ v3 ≡ v4)).

(a) Show that if J ⊨ Φ and |A| is finite then |A| is a composite number (i.e.,
not prime and not 1).

(b) Show that if |A| < ∞ is composite then there is an S-interpretation J with
universe A such that J ⊨ Φ.

Solution. (a) We first interpret each equation ϕi given we know |A| is finite.

ϕ1 = ∃v0, v1 ∈ A RA
1 v0 and RA

1 v1 and v1 ̸= v0

Thus ϕ1 is telling us there are at least two distinct elements that satisfy the relation RA
1 .

Put differently, since RA
1 ⊆ A, we know

∣∣RA
1

∣∣ ≥ 2. Similarly for ϕ2 we have

ϕ2 = ∃v0, v1 ∈ A RA
2 v0 and RA

2 v1 and v1 ̸= v0

where again this is telling us that
∣∣RA

2

∣∣ ≥ 2, or that there are at least two elements that
satisfy RA

2 . Moving on for ϕ3 we have

ϕ3 = ∀v0 ∈ A ∃v1, v2 ∈ A RA
1 v2 and RA

2 v2 and f A(v1, v2) = v0.

This formula tells us that f A : A × A → A when restricted to RA
1 × RA

2 is a surjection
onto A. That is f A

∣∣
RA

1 ×RA
2

is a surjection. Lastly we have

ϕ4 = ∀v1, v2, v3, v4 ∈ A v1, v2 ∈ RA
1 and v3, v4 ∈ RA

2 and f A(v1, v3) = f A(v2, v4)

imply v1 = v2 and v3 = v4.

This is exactly the condition for f A
∣∣
RA

1 ×RA
2

being injective. This fact, together with the

previous one implies f A is a bijection, and hence the domain and range have the same
cardinality:

∣∣RA
1 × RA

2

∣∣ = |A|. A basic property about the cardinality of finite sites B
and C is |B × C| = |B| · |C|.2 We then have |A| =

∣∣RA
1

∣∣ · ∣∣RA
2

∣∣ and hence a composite
number.

2Maybe this holds for larger cardinals too, but I’m not familiar enough to say.
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(b) Now take |A| = n · m with n, m ∈ N such that n, m ̸= 1. Arrange the elements
of A in a grid as follows (in arbitrary order) and give each element a name based on it’s
grid position.

a11 a12 a1m

a21 a22

an1 anm

Then form the following two (intersecting) subsets of A.

a11 a12 a1m

a21 a22

an1 anm

B

C

These can be written B =
{

a1j ∈ A : 1 ≤ j ≤ m
}

, and C = {ai1 ∈ A : 1 ≤ i ≤ n}. Since
n, m > 1 each one of these subsets must have more than one element in each. That is
|B| > 1 and |C| > 1. We can then take B and C to be relations on A and hence ϕ1 and ϕ2
are automatically satisfied with RA

1 = B and RA
2 = C. Next we define f A : B × C → A

as
f (b, c) = f (a1j, ai1) := aij.

This is clearly a bijection from B × C to A, and hence ϕ3 and ϕ4 are also satisfied. Hence
we have constructed an {R1, R2, f }-structure where J ⊨ Φ.
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Problem 3
In the following questions, let Sgr = (1, ·, i) and we only consider Sgr-
interpretations J = (A, a, β) in which A is a group, 1A is the identity of A,
·A is multiplication, and iA is the inverse map. For the following formulas ϕ give
an informal statement of what the formula is saying and say whether J ⊨ ϕ for
every such interpretation J , for at least one such interpretation but not every
such interpretation, or for no such interpretations.

(a) ∀v0∀v1∀v2 · ·v0v1v2 ≡ ·v0 · v1v2

(b) ∀v0∀v1 · ·v0v1v1 ≡ · · v1v0v1

(c) ∃v0((¬v0 ≡ 1) ∧ ·v0v0 ≡ 1)
(d) ∃v0∀v1v2 ≡ ·v0v1

(e) ∃v0∃v1v2 ≡ ·v0v1

(f) ∃v0∃v1(¬v0 ≡ v1 ∨ ∀v3v3 ≡ 1)
(g) ∃v3(·v3v2 ≡ 1 ∧ ¬v3 ≡ iv2)

(h) ∀v0((·v0v0 ≡ 1 ∧ · · v0v0v0 ≡ 1) → v0 ≡ 1)

Solution. First, here is a summary of my solutions, with more details expounded in
each part.

Part Holds for ___ interpretations

(a) all
(b) some
(c) some
(d) some
(e) all
(f) all
(g) no
(h) all

(a) Written in infix notation this equation reads

∀v0, v1, v2 ∈ A (v0 · v1) · v2 = v0 · (v1 · v2)

which clearly shows that the multiplication in the group is associative. This facts holds
for every such interpretation J by the definition of group multiplication.

(b) Again, writing in infix notation we have

∀v0, v1 ∈ A (v0 · v1) · v1 = (v1 · v0) · v1

Multiplying on thr right by v−1
1 we have v0 · v1 = v1 · v0 which is clearly only true in

Abelian groups. The existence of non-Abelian groups (e.g. the permutation group)
shows this formula holds in at least one such interpretation J .

(c) In everyday math notation we might write

∃v0 ∈ A v0 ̸= 1A and v2
0 = 1A.

This formula holds for at least one interpretation, but not necessarily all. To see this
take the trivial group G = ({e}, ·) where the only multiplication rule we have is
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e · e = e. Since G is a group where this formula does not hold it cannot hold in all
interpretations. That said the group H = ({1,−1}, ·R) is a group where this formula
holds with v0 = −1.

(d) Here we have
∃v0 ∈ A ∀v1 ∈ A v2 = v0 · v1.

This can be found to hold, for example, in the trivial group G = ({e}, ·). We then have
v0, v1, v2 = e and the equation reads e = e · e which clearly holds. That said this equation
does not hold in all interpretations. To see this take the group H = ({1,−1}, ·R). Now
take v2 = 1 and the equation says either 1 = 1 · −1∧ 1 = 1 · 1 or 1 = −1 · −1∧ 1 = −1 · 1
which clearly neither hold.

(e) Here we have
∃v0, v1 ∈ A v2 = v0 · v1.

This can be found to hold in all interpretations by taking v0 = v2 and v1 = 1A.
(f)

∃v0, v1 ∈ A v0 ̸= v1 or ∀v3 ∈ A v3 = 1A

This formula says you either have

• two distinct elements in the group, or
• all elements in your group are the identity element.

And this holds for all interpretations J .
(g) Here we use the notation g−1 instead of iA(g) for familiarity.

∃v3 ∈ A v3 · v2 = 1A and v3 ̸= v−1
2

This formula does not hold in any such interpretation J because of the uniqueness of
(left and right) inverses in groups.

(h) Finally, in modern notation we have:

∀v0 ∈ A v2
0 = 1A and v3

0 = 1A =⇒ v0 = 1A.

This formula holds for all such interpretations J as follows. We can write v3
0 = v0 · v2

0 =

v0 · 1A = v0 = 1A. This manipulation does not use anything about a particular group
and so this formula holds for all such interpretations J .
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