Logic and Computability Assignment 3

Name: Nate Stemen (20906566)
Due: Feb 11, 2022 11:59PM
Email: nate@stemen.email

Problem 1

Let $S=\{0,1,+, \cdot\}$.
(a) Let $\mathcal{A}=(A, \mathfrak{a})$ be an S-structure and suppose that $\sigma: A \rightarrow A$ is a bijection such that the following hold:

- $\sigma\left(c^{A}\right)=c^{A}$ for all constant symbols;
- $\sigma\left(f^{A}\left(a_{1}, \ldots, a_{n}\right)\right)=f^{A}\left(\sigma\left(a_{1}\right), \ldots, \sigma\left(a_{n}\right)\right)$ for all n-ary function symbols f and all $a_{1}, \ldots, a_{n} \in A$;
- $R^{A} a_{1} \cdots a_{n} \Longleftrightarrow R \sigma\left(a_{1}\right) \cdots \sigma\left(a_{n}\right)$ for all n-ary relation symbols R and $a_{1}, \ldots, a_{n} \in A$.
Show that if $Q \subseteq A^{n}$ is a relation that is definable in \mathcal{A} then $Q a_{1} \cdots a_{n} \Longleftrightarrow$ $Q \sigma\left(a_{1}\right) \cdots \sigma\left(a_{n}\right)$. (Hint: isomorphism!)
(b) Show that the binary relation $<$ is definable in \mathbb{R} (where we interpret $0,1,+, \cdot$ as usual).
(c) Show that the binary relation $<$ is definable in \mathbb{Z} (where we interpret $0,1,+, \cdot$ as usual). (Hint: use Lagrange's four-squares theorem.)
(d) Show that the binary relation $<$ is not definable in $Q(\sqrt{2})$, when we interpret $0,1,+, \cdot$ as usual. (Hint: consider the map σ that sends $a+b \sqrt{2} \rightarrow$ $a-b \sqrt{2}$ for $a, b \in \mathbb{Q}$.)

Solution. (a) (b) Let $i: \mathbb{R} \rightarrow \mathbb{R}$ be the function satisfying $a+i(a)=0$: that is the additive inverse function. Now consider $\phi \in L^{S}$ to be given by

$$
\phi=\exists r\left(v_{1}+i\left(v_{0}\right) \equiv r^{2} \wedge \neg[v \equiv 0]\right)
$$

Written in the the context of \mathbb{R} we have $v_{1}-v_{0}=r^{2}$ and hence $\phi[a, b]=b-a=r^{2}$. Hence we've found a formula that holds in \mathbb{R} if and only if $a<b$. More formally we have $\mathcal{A} \vDash \phi[a, b] \Longleftrightarrow a<b$.
(c) Let $i: \mathbb{Z} \rightarrow \mathbb{Z}$ be the function satisfying $a+i(a)=0$: that is, it's the additive inverse function. Consider $\phi \in L^{S}$ to be given by

$$
\phi=\exists a_{0} \exists a_{1} \exists a_{2} \exists a_{3}\left(v_{1}+i\left(v_{0}\right) \equiv a_{0}^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right) .
$$

Then for ϕ to be true, we must have $v_{1}+i\left(v_{0}\right)=v_{1}-v_{0}$ be a positive integer. Written differently, $\mathcal{A} \vDash \phi[a, b] \Longleftrightarrow a<b$ and hence $<$ is definable in \mathbb{Z}.
(d)

Problem 2

For the following we work with a first order alphabet with a binary relation R, a binary function f, an $(r+1)$-ary function g (where r is a nonnegative integer), and a constant symbol c. Write all of the formulas below in terms of formulas not involving substitutions.
(a)

$$
\left[\forall v_{0} \exists v_{1}\left(\left(R v_{0} v_{1} \wedge R v_{0} v_{2}\right) \vee \exists v_{2} f v_{2} v_{2} \equiv v_{0}\right)\right] \frac{v_{0}}{v_{0}} \frac{f v_{0} v_{1}}{v_{2}}
$$

(b)

$$
\left[\left(\exists v_{0} \forall v_{1} f c v_{1} \equiv v_{0} \rightarrow \forall v_{2} f v_{2} v_{0} \equiv c\right)\right] \frac{f v_{0} v_{2}}{v_{2}} \frac{f c v_{1}}{v_{1}} \frac{v_{3}}{v_{0}}
$$

(c)

$$
\left[\left(v_{0} \equiv v_{1} \wedge \forall v_{0} R f v_{2} v_{1} c\right)\right] \frac{f v_{2} c}{v_{0}}
$$

(d)

$$
\begin{aligned}
{\left[\forall v _ { 0 } \forall v _ { 1 } \cdots \forall v _ { r } \left(v_{0} \equiv v_{r+1} \wedge v_{1} \equiv v_{r+2}\right.\right.} & \wedge \cdots \wedge v_{r} \equiv v_{2 r+1} \\
& \left.\left.\rightarrow g v_{0} \cdots v_{r} \equiv c\right)\right] \frac{c}{v_{r+1}} \frac{c}{v_{r+2}} \cdots \frac{c}{v_{2 r+1}}
\end{aligned}
$$

(e)

$$
\left[\forall v_{0} \exists v_{0} f v_{0} v_{0} \equiv c\right] \frac{f v_{0} v_{0}}{v_{0}}
$$

Solution. (a) (b) (c) (d) (e)

Problem 3

Let S be a first-order alphabet with a binary function symbol f and a unary relation symbol R. Let ϕ and ψ be formulas in \mathcal{L}^{S} in which x, y are free variables with $x \neq y$. Give formulas involving ϕ, ψ, variables, symbols from $S,($,$) ,$ $\forall, \exists, \wedge, \vee, \rightarrow, \leftrightarrow, \neg$, and substitution that say the following when interpreted in a domain of discourse $\mathcal{J}=(A, \mathfrak{a}, \beta)$:
(a) There are at most three values of a in A for which we do not have $\mathcal{J} \frac{a}{x} \vDash \phi$.
(b) For every value $a \in A$ such that $\mathcal{J} \frac{a}{x} \vDash \phi$ there is some $b \in A$ such that for all $c \in A$, if $\mathcal{J} \frac{b}{x} \frac{c}{y} \vDash \psi$ then $\mathcal{J} \frac{a}{x} \frac{b}{y} \vDash \phi$.
(c) There is some $a \in A$ that is in the image $f^{A}: A^{2} \rightarrow A$ and some $b \in R^{A}$ such that $\mathcal{J} \frac{a}{x} \vDash \phi$ and $\mathcal{J} \frac{b}{x} \vDash \psi$.
(d) If there exists some $a \in A$ such that $\mathcal{J} \frac{a}{x} \vDash \phi$ then there is some $b \in A$ such that $\mathcal{J} \frac{b}{x} \vDash \psi$.
(e) If there is some $a \in A$ and some $b \in A$ such that $\mathcal{J} \frac{a}{x} \frac{b}{y} \vDash \phi$ then for every $c \in A$ we have $\mathcal{J} \frac{c}{x} \frac{c}{y} \vDash \phi$.

Solution. (a) (b) (c) (d) (e)

