Logic and Computability Assignment 3

Name: Nate Stemen (20906566) Email: nate@stemen.email Due: Feb 11, 2022 11:59PM Course: PMATH 632

Problem 1

Let $S = \{0, 1, +, \cdot\}.$

- (a) Let $\mathcal{A} = (A, \mathfrak{a})$ be an *S*-structure and suppose that $\sigma : A \to A$ is a bijection such that the following hold:
 - $\sigma(c^A) = c^A$ for all constant symbols;
 - $\sigma(f^A(a_1,\ldots,a_n)) = f^A(\sigma(a_1),\ldots,\sigma(a_n))$ for all *n*-ary function symbols *f* and all $a_1,\ldots,a_n \in A$;
 - $R^A a_1 \cdots a_n \iff R\sigma(a_1) \cdots \sigma(a_n)$ for all *n*-ary relation symbols *R* and $a_1, \ldots, a_n \in A$.

Show that if $Q \subseteq A^n$ is a relation that is definable in \mathcal{A} then $Qa_1 \cdots a_n \iff Q\sigma(a_1) \cdots \sigma(a_n)$. (Hint: isomorphism!)

- (b) Show that the binary relation < is definable in \mathbb{R} (where we interpret $0, 1, +, \cdot$ as usual).
- (c) Show that the binary relation < is definable in \mathbb{Z} (where we interpret $0, 1, +, \cdot$ as usual). (Hint: use Lagrange's four-squares theorem.)
- (d) Show that the binary relation < is not definable in $\mathbb{Q}(\sqrt{2})$, when we interpret 0, 1, +, \cdot as usual. (Hint: consider the map σ that sends $a + b\sqrt{2} \rightarrow a b\sqrt{2}$ for $a, b \in \mathbb{Q}$.)

Solution. (a) (b) Let $i : \mathbb{R} \to \mathbb{R}$ be the function satisfying a + i(a) = 0: that is the additive inverse function. Now consider $\phi \in L^S$ to be given by

$$\phi = \exists r \ \Big(v_1 + i(v_0) \equiv r^2 \land \neg [v \equiv 0] \Big).$$

Written in the the context of \mathbb{R} we have $v_1 - v_0 = r^2$ and hence $\phi[a, b] = b - a = r^2$. Hence we've found a formula that holds in \mathbb{R} if and only if a < b. More formally we have $\mathcal{A} \models \phi[a, b] \iff a < b$.

(c) Let $i : \mathbb{Z} \to \mathbb{Z}$ be the function satisfying a + i(a) = 0: that is, it's the additive inverse function. Consider $\phi \in L^S$ to be given by

$$\phi = \exists a_0 \exists a_1 \exists a_2 \exists a_3 \ (v_1 + i(v_0) \equiv a_0^2 + a_1^2 + a_2^2 + a_3^2).$$

Then for ϕ to be true, we must have $v_1 + i(v_0) = v_1 - v_0$ be a positive integer. Written differently, $\mathcal{A} \vDash \phi[a, b] \iff a < b$ and hence < is definable in \mathbb{Z} . (d) Problem 2 For the following we work with a first order alphabet with a binary relation *R*, a binary function f, an (r + 1)-ary function g (where r is a nonnegative integer), and a constant symbol c. Write all of the formulas below in terms of formulas not involving substitutions. (a) $\left[\forall v_0 \exists v_1 ((Rv_0v_1 \land Rv_0v_2) \lor \exists v_2 f v_2 v_2 \equiv v_0)\right] \frac{v_0}{v_0} \frac{f v_0 v_1}{v_2}$ (b) $\left[(\exists v_0 \forall v_1 f c v_1 \equiv v_0 \to \forall v_2 f v_2 v_0 \equiv c) \right] \frac{f v_0 v_2}{v_2} \frac{f c v_1}{v_1} \frac{v_3}{v_0}$ (c) $\left[\left(v_0 \equiv v_1 \land \forall v_0 R f v_2 v_1 c\right)\right] \frac{f v_2 c}{v_0}$ (d) $[\forall v_0 \forall v_1 \cdots \forall v_r (v_0 \equiv v_{r+1} \land v_1 \equiv v_{r+2} \land \cdots \land v_r \equiv v_{2r+1}]$ $\xrightarrow{} gv_0 \cdots v_r \equiv c)] \frac{c}{v_{r+1}} \frac{c}{v_{r+2}} \cdots \frac{c}{v_{2r+1}}$ (e) $\left[\forall v_0 \exists v_0 f v_0 v_0 \equiv c\right] \frac{f v_0 v_0}{v_0}$

Solution. (a) (b) (c) (d) (e)

Problem 3

Let *S* be a first-order alphabet with a binary function symbol *f* and a unary relation symbol *R*. Let ϕ and ψ be formulas in \mathcal{L}^S in which *x*, *y* are free variables with $x \neq y$. Give formulas involving ϕ , ψ , variables, symbols from *S*, (,), $\forall, \exists, \land, \lor, \rightarrow, \leftrightarrow, \neg$, and substitution that say the following when interpreted in a domain of discourse $\mathcal{J} = (A, \mathfrak{a}, \beta)$:

- (a) There are at most three values of *a* in *A* for which we do not have $\mathcal{J}\frac{a}{x} \models \phi$.
- (b) For every value $a \in A$ such that $\mathcal{J}\frac{a}{x} \models \phi$ there is some $b \in A$ such that for all $c \in A$, if $\mathcal{J}\frac{b}{x}\frac{c}{y} \models \psi$ then $\mathcal{J}\frac{a}{x}\frac{b}{y} \models \phi$.
- (c) There is some $a \in A$ that is in the image $f^A : A^2 \to A$ and some $b \in R^A$ such that $\mathcal{J}\frac{a}{x} \models \phi$ and $\mathcal{J}\frac{b}{x} \models \psi$.
- (d) If there exists some $a \in A$ such that $\mathcal{J}\frac{a}{x} \models \phi$ then there is some $b \in A$ such that $\mathcal{J}\frac{b}{x} \models \psi$.
- (e) If there is some $a \in A$ and some $b \in A$ such that $\mathcal{J}\frac{a}{x}\frac{b}{y} \models \phi$ then for every $c \in A$ we have $\mathcal{J}\frac{c}{x}\frac{c}{y} \models \phi$.

Solution. (a) (b) (c) (d) (e)