
Numerical Analysis Assignment 1

Name: Nate Stemen (20906566) Due: Fri, Sep 25, 2020 5:00 PM
Email: nate.stemen@uwaterloo.ca Course: AMATH 740

Problem 1
Eigenvalues and eigenvectors of the 1D Laplacian.

(a) Show that the n eigenvectors are given by the vectors x(p) with components

x(p)
j = sin(jpπh)

and with eigenvalues

λp =
2
h2 (cos(pπh)− 1).

(b) Verify the functions u(p)(x) = sin(pπx) with p ∈ N are eigenfunctions of
the continuous differential operator d2/dx2 on domain [0, 1] with boundary
conditions u(0) = 0 = u(1).

(c) Compare the eigenvectors and the eigenvalues for the discrete and continu-
ous operators and comment. Are the discrete and continuous eigenvalues
similar for small values of h · p?

Solution. ?? We start by verifying the the eigenvectors and eigenvalues given are
correct.

Ax(p) =
1
h2


−2 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2




sin(pπh)

sin(2pπh)
...

sin((n − 1)pπh)
sin(npπh)



=
1
h2


−2 sin(pπh) + sin(2pπh)

sin(pπh)− 2 sin(2pπh) + sin(3pπh)
...

sin((n − 1)pπh)− 2 sin(npπh)


That isn’t actually that helpful though except to get an idea what we’re looking at (but I
already typed it up). Lets instead compute a general element (Ax(p))j as follows. We
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use φ = pπh to make the trig identity easier to see.

(Ax(p))j =
1
h2 (sin((j − 1)φ)− 2 sin(jφ) + sin((j + 1)φ))

=
1
h2 (−2 sin(jφ) + sin(jφ + φ) + sin(jφ − φ))

=
1
h2 (−2 sin(jφ) + 2 sin(jφ) cos(φ)) (by product to sum identity)

=
2
h2 (cos(pπh)− 1) sin(jpπh)

= λp sin(jpπh) = λp(x(p))j

It’s worth noting that the first and last elements of x(p) are slightly different because
they don’t get 3 terms, but the above calculation still works. For the first element
(Ax(p))1 the first sin term disappears because sin 0 = 0, and for (Ax(p))n the last sin
term vanishes because (n + 1)h = 1 and sin(nπ) = 0.

?? First it’s simple to verify the boundary conditions because sin 0 = 0 and sin(pπ) =
0 for p ∈ N. Now to show it’s an eigenvector of the second derivative operator.

d2

dx2 u(p)(x) = pπ
d

dx
cos(pπx) =

λp︷ ︸︸ ︷
−p2π2 sin(pπx) = λpu(p)(x)

So the eigenvalues here are λp = −p2π2.
?? At first glance the eigenvectors look very similar for these two problems, but

the eigenvalues look quite different. However if we make n very large (make the
numerical grid much finer) then we can use the Taylor series for cos get get the follow
approximation.

2
h2 (cos(pπh)− 1) ≈ 2

h2

(
1 − p2π2h2

2
+O

(
h4
)
− 1
)

= −p2π2 +O
(

h2
)

So in the limit n → ∞ we do recover the continuous eigenvalues which is a sign we are
doing something right.
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Problem 2
Find the LU decomposition of

A =

1 4 7
2 5 8
3 6 10


and briefly explain the steps.

Solution.

1 4 7
2 5 8
3 6 10

 =

L︷ ︸︸ ︷ 1 0 0
l21 1 0
l31 l32 1


U︷ ︸︸ ︷u11 u12 u13

0 u22 u23
0 0 u33


=

 u11 u12 u13
l21u11 l21u12 + u22 l21u13 + u23
l31u11 l31u12 + l23u22 l31u13 + l32u23 + u33


With this we can immediately see u11 = 1, u12 = 4, u13 = 7, l21 = 2 and l31 = 3. We
can then plug these numbers into the other 4 equations to work out the rest of the
components. With that we obtain the following lower and upper matrices.

L =

1 0 0
2 1 0
3 6 1

 U =

1 4 7
0 −1 −6
0 0 25
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Problem 3
Computational work for recursive determinant computation.

Solution. Using the following recursive definition of the determinant

det A =
n

∑
i=1

(−1)i+jaij det
(

Aij
)

we can calculate the work needed to compute the determinant of an n × n matrix as
Wn.

Wn =
n

∑
i=1

(1M + Wn−1) = n(1 + Wn−1)

In order to solve this recursive recurrence relation it is helpful to expand it out a few
times.

Wn = n(1 + Wn−1)

= n(1 + (n − 1)(1 + (n − 2)(1 + Wn−3)))

= n + n(n − 1) + n(n − 1)(n − 2) + n(n − 1)(n − 2)Wn−3

=
n!

(n − 1)!
+

n!
(n − 2)!

+
n!

(n − 3)!
Wn−3

Writing the expression in the last form allows us to more easily see a pattern arising. We
are summing progressively less “cut off” forms of the factorial which can be expressed
as follows. I know the base condition of W2 = 3, but not exactly sure how to put that in
here.

Wn = n!

(
n−1

∑
k=1

1
k!

+ 1

)
In the limit of large n this approaches Wn = (e + 1)n!. Nice... but also very expensive!
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Problem 4
Vector norm inequalities.
Show that ∥x∥∞ ≤ ∥x∥1 ≤ n∥x∥∞ for x ∈ Rn.

Solution. First, let j be the index with maximum absolute value. That is
∣∣xj
∣∣ =

maxi |xi| = ∥x∥∞.

∥x∥∞ = max
1≤i≤n

|xi|

≤
∣∣xj
∣∣+ n

∑
i=1
i ̸=j

|xi| (bc second term is positive)

=
n

∑
i=1

|xi| = ∥x∥1

≤
n

∑
i=1

n
∣∣xj
∣∣ (bc

∣∣xj
∣∣ ≥ |xi| for all i)

= n
n

∑
i=1

∣∣xj
∣∣ = n∥x∥∞ □
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Problem 5
Matrix norm formula.
Let A ∈ Rn×n. Show that

∥A∥1 = max
1≤j≤n

n

∑
i=1

∣∣aij
∣∣.

Solution. We begin by showing the 1-norm of a matrix must be less or equal to the
maximum absolute column sum. Once that is established we will find a vector that
brings the matrix norm up to that bound, which shows the maximum can be attained
and hence the equality true.

∥Ax∥1 =
n

∑
i=1

∣∣∣∣∣ n

∑
j=1

aijxj

∣∣∣∣∣
≤ ∑

i
∑

j

∣∣aijxj
∣∣

≤ ∑
j

∣∣xj
∣∣∑

i

∣∣aij
∣∣

≤
[

max
k

∑
i
|aik|

]
∑

j

∣∣xj
∣∣

︸ ︷︷ ︸
∥x∥1

If we use the the following definition of the matrix norm ∥A∥1 = max∥x1∥=1 ∥Ax∥1,
then the last term in the above inequality vanishes (goes to 1) and hence we have
established the 1-norm of this matrix is always less than or equal to the maximum
absolute column sum.

Now let ν be the index where the maximum absolute column sum lives (maxj ∑i
∣∣aij
∣∣ =

∑i |aiν|). Choose x = eν where eν is the unit normal vector with 1 in the νth position,
and 0 everywhere else. Now we can evaluate the norm of A times this vector.

∥Ax∥1 = ∥Aeν∥1 = ∑
i

∣∣∣∣∣∑j
aijej

∣∣∣∣∣
= ∑

i
|aiν|

= max
1≤j≤n

n

∑
i=1

∣∣aij
∣∣

Clearly ∥eν∥1 = 1, so we’ve found a vector on the unit sphere that attains the maximum
which shows the equality of the given statement.
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Problem 6
Inverse update formula.
Let A ∈ Rn×n be a nonsingular matrix, and u, v ∈ Rn. Show that if A + uv⊺ is
nonsingular, then it’s inverse can be expressed by the formula

(A + uv⊺)−1 = A−1 − 1
1 + v⊺A−1u

A−1uv⊺A−1

Solution. We start by showing 1 + v⊺A−1u ̸= 0 by contradiction. So assume 1 +
v⊺A−1u = 0.

1 + v⊺A−1u = 0

u + uv⊺A−1u = 0(
1 + uv⊺A−1

)
u = 0

1 + uv⊺A−1 = 0n×n

A + uv⊺ = 0n×n

Where we’ve arrived at a contradiction on the last equation, because we took A + uv⊺

to be nonsingular (and hence not be the 0 matrix).
With this proved we can now show the formula is indeed an inverse. For notational

convenience we use α = 1
1+v⊺A−1u .

(A + uv⊺)

(
A−1 − 1

1 + v⊺A−1u
A−1uv⊺A−1

)
= 1 − αuv⊺A−1 + uv⊺A−1 − αuv⊺A−1uv⊺A−1

= 1 + u
(
−α + 1 − αv⊺A−1u

)
v⊺A−1

= 1 + u
(

1 +−α
[
1 + v⊺A−1u

])
v⊺A−1

= 1 + u(1 − 1)v⊺A−1 = 1

If a square matrix has a left (or right) inverse, then it also has a right (left) inverse and
they are equal.1 We can now conclude that the formula given is indeed an inverse for
A + uv⊺.

1If AB = 1, then 1 = det AB = det A det B so we know B is nonsingular. BAB = B =⇒ (BA−1)B =
0 =⇒ BA = 1
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