Numerical Analysis Assignment 1

Name: Nate Stemen (20906566)
Due: Fri, Sep 25, 2020 5:00 PM
Email: nate.stemen@uwaterloo.ca

Problem 1

Eigenvalues and eigenvectors of the 1D Laplacian.
(a) Show that the n eigenvectors are given by the vectors $\mathbf{x}^{(p)}$ with components

$$
x_{j}^{(p)}=\sin (j p \pi h)
$$

and with eigenvalues

$$
\lambda_{p}=\frac{2}{h^{2}}(\cos (p \pi h)-1) .
$$

(b) Verify the functions $u^{(p)}(x)=\sin (p \pi x)$ with $p \in \mathbb{N}$ are eigenfunctions of the continuous differential operator $\mathrm{d}^{2} / \mathrm{d} x^{2}$ on domain $[0,1]$ with boundary conditions $u(0)=0=u(1)$.
(c) Compare the eigenvectors and the eigenvalues for the discrete and continuous operators and comment. Are the discrete and continuous eigenvalues similar for small values of $h \cdot p$?

Solution. ?? We start by verifying the the eigenvectors and eigenvalues given are correct.

$$
\begin{aligned}
A \mathbf{x}^{(p)} & =\frac{1}{h^{2}}\left[\begin{array}{ccccc}
-2 & 1 & & & \\
1 & -2 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & 1 & -2 & 1 \\
& & 1 & -2
\end{array}\right]\left[\begin{array}{c}
\sin (p \pi h) \\
\sin (2 p \pi h) \\
\vdots \\
\sin ((n-1) p \pi h) \\
\sin (n p \pi h)
\end{array}\right] \\
& =\frac{1}{h^{2}}\left[\begin{array}{c}
-2 \sin (p \pi h)+\sin (2 p \pi h) \\
\sin (p \pi h)-2 \sin (2 p \pi h)+\sin (3 p \pi h) \\
\vdots \\
\sin ((n-1) p \pi h)-2 \sin (n p \pi h)
\end{array}\right]
\end{aligned}
$$

That isn't actually that helpful though except to get an idea what we're looking at (but I already typed it up). Lets instead compute a general element $\left(A \boldsymbol{x}^{(p)}\right)_{j}$ as follows. We
use $\varphi=p \pi h$ to make the trig identity easier to see.

$$
\begin{aligned}
\left(A \mathbf{x}^{(p)}\right)_{j} & =\frac{1}{h^{2}}(\sin ((j-1) \varphi)-2 \sin (j \varphi)+\sin ((j+1) \varphi)) \\
& =\frac{1}{h^{2}}(-2 \sin (j \varphi)+\sin (j \varphi+\varphi)+\sin (j \varphi-\varphi)) \\
& =\frac{1}{h^{2}}(-2 \sin (j \varphi)+2 \sin (j \varphi) \cos (\varphi)) \quad \text { (by product to sum identity) } \\
& =\frac{2}{h^{2}}(\cos (p \pi h)-1) \sin (j p \pi h) \\
& =\lambda_{p} \sin (j p \pi h)=\lambda_{p}\left(\mathbf{x}^{(p)}\right)_{j}
\end{aligned}
$$

It's worth noting that the first and last elements of $\mathbf{x}^{(p)}$ are slightly different because they don't get 3 terms, but the above calculation still works. For the first element $\left(A \mathbf{x}^{(p)}\right)_{1}$ the first \sin term disappears because $\sin 0=0$, and for $\left(A \mathbf{x}^{(p)}\right)_{n}$ the last sin term vanishes because $(n+1) h=1$ and $\sin (n \pi)=0$.
?? First it's simple to verify the boundary conditions because $\sin 0=0$ and $\sin (p \pi)=$ 0 for $p \in \mathbb{N}$. Now to show it's an eigenvector of the second derivative operator.

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} u^{(p)}(x)=p \pi \frac{\mathrm{~d}}{\mathrm{~d} x} \cos (p \pi x)=\overbrace{-p^{2} \pi^{2}}^{\lambda_{p}} \sin (p \pi x)=\lambda_{p} u^{(p)}(x)
$$

So the eigenvalues here are $\lambda_{p}=-p^{2} \pi^{2}$.
?? At first glance the eigenvectors look very similar for these two problems, but the eigenvalues look quite different. However if we make n very large (make the numerical grid much finer) then we can use the Taylor series for cos get get the follow approximation.

$$
\begin{aligned}
\frac{2}{h^{2}}(\cos (p \pi h)-1) & \approx \frac{2}{h^{2}}\left(1-\frac{p^{2} \pi^{2} h^{2}}{2}+\mathcal{O}\left(h^{4}\right)-1\right) \\
& =-p^{2} \pi^{2}+\mathcal{O}\left(h^{2}\right)
\end{aligned}
$$

So in the limit $n \rightarrow \infty$ we do recover the continuous eigenvalues which is a sign we are doing something right.

Problem 2

Find the LU decomposition of

$$
A=\left[\begin{array}{ccc}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 10
\end{array}\right]
$$

and briefly explain the steps.

Solution.

$$
\begin{aligned}
{\left[\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 10
\end{array}\right] } & =\overbrace{\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right]}^{\overbrace{\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]}^{U}} \begin{array}{l}
u_{11} \\
\\
\end{array}=\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
l_{21} u_{11} & l_{21} u_{12}+u_{22} & l_{21} u_{13}+u_{23} \\
l_{31} u_{11} & l_{31} u_{12}+l_{23} u_{22} & l_{31} u_{13}+l_{32} u_{23}+u_{33}
\end{array}\right]
\end{aligned}
$$

With this we can immediately see $u_{11}=1, u_{12}=4, u_{13}=7, l_{21}=2$ and $l_{31}=3$. We can then plug these numbers into the other 4 equations to work out the rest of the components. With that we obtain the following lower and upper matrices.

$$
L=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 6 & 1
\end{array}\right] \quad U=\left[\begin{array}{ccc}
1 & 4 & 7 \\
0 & -1 & -6 \\
0 & 0 & 25
\end{array}\right]
$$

Problem 3

Computational work for recursive determinant computation.

Solution. Using the following recursive definition of the determinant

$$
\operatorname{det} A=\sum_{i=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det}\left(A_{i j}\right)
$$

we can calculate the work needed to compute the determinant of an $n \times n$ matrix as W_{n}.

$$
W_{n}=\sum_{i=1}^{n}\left(1 \mathrm{M}+W_{n-1}\right)=n\left(1+W_{n-1}\right)
$$

In order to solve this recursive recurrence relation it is helpful to expand it out a few times.

$$
\begin{aligned}
W_{n} & =n\left(1+W_{n-1}\right) \\
& =n\left(1+(n-1)\left(1+(n-2)\left(1+W_{n-3}\right)\right)\right) \\
& =n+n(n-1)+n(n-1)(n-2)+n(n-1)(n-2) W_{n-3} \\
& =\frac{n!}{(n-1)!}+\frac{n!}{(n-2)!}+\frac{n!}{(n-3)!} W_{n-3}
\end{aligned}
$$

Writing the expression in the last form allows us to more easily see a pattern arising. We are summing progressively less "cut off" forms of the factorial which can be expressed as follows. I know the base condition of $W_{2}=3$, but not exactly sure how to put that in here.

$$
W_{n}=n!\left(\sum_{k=1}^{n-1} \frac{1}{k!}+1\right)
$$

In the limit of large n this approaches $W_{n}=(e+1) n$!. Nice... but also very expensive!

Problem 4

Vector norm inequalities.
Show that $\|\mathbf{x}\|_{\infty} \leq\|\mathbf{x}\|_{1} \leq n\|\mathbf{x}\|_{\infty}$ for $\mathbf{x} \in \mathbb{R}^{n}$.

Solution. First, let j be the index with maximum absolute value. That is $\left|x_{j}\right|=$ $\max _{i}\left|x_{i}\right|=\|\mathbf{x}\|_{\infty}$.

$$
\begin{array}{rlr}
\|\mathbf{x}\|_{\infty} & =\max _{1 \leq i \leq n}\left|x_{i}\right| & \\
& \leq\left|x_{j}\right|+\sum_{\substack{i=1 \\
i \neq j}}^{n}\left|x_{i}\right| & \text { (bc second term is positive) } \\
& =\sum_{i=1}^{n}\left|x_{i}\right|=\|\mathbf{x}\|_{1} & \\
& \leq \sum_{i=1}^{n} n\left|x_{j}\right| & \left(\mathrm{bc}\left|x_{j}\right| \geq\left|x_{i}\right| \text { for all } i\right) \\
& =n \sum_{i=1}^{n}\left|x_{j}\right|=n\|\mathbf{x}\|_{\infty} &
\end{array}
$$

Problem 5

Matrix norm formula.
Let $A \in \mathbb{R}^{n \times n}$. Show that

$$
\|A\|_{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|a_{i j}\right| .
$$

Solution. We begin by showing the 1-norm of a matrix must be less or equal to the maximum absolute column sum. Once that is established we will find a vector that brings the matrix norm up to that bound, which shows the maximum can be attained and hence the equality true.

$$
\begin{aligned}
\|A \mathbf{x}\|_{1} & =\sum_{i=1}^{n}\left|\sum_{j=1}^{n} a_{i j} x_{j}\right| \\
& \leq \sum_{i} \sum_{j}\left|a_{i j} x_{j}\right| \\
& \leq \sum_{j}\left|x_{j}\right| \sum_{i}\left|a_{i j}\right| \\
& \leq\left[\max _{k} \sum_{i}\left|a_{i k}\right|\right] \underbrace{\sum_{j}\left|x_{j}\right|}_{\|\mathbf{x}\|_{1}}
\end{aligned}
$$

If we use the the following definition of the matrix norm $\|A\|_{1}=\max _{\left\|\mathbf{x}_{1}\right\|=1}\|A \mathbf{x}\|_{1}$, then the last term in the above inequality vanishes (goes to 1) and hence we have established the 1-norm of this matrix is always less than or equal to the maximum absolute column sum.

Now let v be the index where the maximum absolute column sum lives ($\max _{j} \sum_{i}\left|a_{i j}\right|=$ $\left.\sum_{i}\left|a_{i v}\right|\right)$. Choose $\mathbf{x}=\mathbf{e}_{v}$ where \mathbf{e}_{v} is the unit normal vector with 1 in the v th position, and 0 everywhere else. Now we can evaluate the norm of A times this vector.

$$
\begin{aligned}
\|A \mathbf{x}\|_{1}=\left\|A \mathbf{e}_{v}\right\|_{1} & =\sum_{i}\left|\sum_{j} a_{i j} e_{j}\right| \\
& =\sum_{i}\left|a_{i v}\right| \\
& =\max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|a_{i j}\right|
\end{aligned}
$$

Clearly $\left\|\mathbf{e}_{v}\right\|_{1}=1$, so we've found a vector on the unit sphere that attains the maximum which shows the equality of the given statement.

Problem 6

Inverse update formula.
Let $A \in \mathbb{R}^{n \times n}$ be a nonsingular matrix, and $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$. Show that if $A+\mathbf{u} \mathbf{v}^{\top}$ is nonsingular, then it's inverse can be expressed by the formula

$$
\left(A+\mathbf{u} \mathbf{v}^{\top}\right)^{-1}=A^{-1}-\frac{1}{1+\mathbf{v}^{\top} A^{-1} \mathbf{u}} A^{-1} \mathbf{u} \mathbf{v}^{\top} A^{-1}
$$

Solution. We start by showing $1+\mathbf{v}^{\boldsymbol{\top}} A^{-1} \mathbf{u} \neq 0$ by contradiction. So assume $1+$ $\mathbf{v}^{\top} A^{-1} \mathbf{u}=0$.

$$
\begin{aligned}
1+\mathbf{v}^{\top} A^{-1} \mathbf{u} & =0 \\
\mathbf{u}+\mathbf{u v}^{\top} A^{-1} \mathbf{u} & =\mathbf{0} \\
\left(\mathbb{1}+\mathbf{u}^{\top} A^{-1}\right) \mathbf{u} & =\mathbf{0} \\
\mathbb{1}+\mathbf{u v}^{\top} A^{-1} & =0^{n \times n} \\
A+\mathbf{u v}^{\top} & =0^{n \times n}
\end{aligned}
$$

Where we've arrived at a contradiction on the last equation, because we took $A+\mathbf{u v}^{\top}$ to be nonsingular (and hence not be the 0 matrix).

With this proved we can now show the formula is indeed an inverse. For notational convenience we use $\alpha=\frac{1}{1+\mathbf{v}^{\top} A^{-1} \mathbf{u}}$.

$$
\begin{aligned}
\left(A+\mathbf{u} \mathbf{v}^{\top}\right) & \left(A^{-1}-\frac{1}{1+\mathbf{v}^{\top} A^{-1} \mathbf{u}} A^{-1} \mathbf{u} \mathbf{v}^{\top} A^{-1}\right) \\
& =\mathbb{1}-\alpha \mathbf{u} \mathbf{v}^{\top} A^{-1}+\mathbf{u}^{\top} A^{-1}-\alpha \mathbf{u}^{\top} A^{-1} \mathbf{u} \mathbf{v}^{\top} A^{-1} \\
& =\mathbb{1}+\mathbf{u}\left(-\alpha+1-\alpha \mathbf{v}^{\top} A^{-1} \mathbf{u}\right) \mathbf{v}^{\top} A^{-1} \\
& =\mathbb{1}+\mathbf{u}\left(1+-\alpha\left[1+\mathbf{v}^{\top} A^{-1} \mathbf{u}\right]\right) \mathbf{v}^{\top} A^{-1} \\
& =\mathbb{1}+\mathbf{u}(1-1) \mathbf{v}^{\top} A^{-1}=\mathbb{1}
\end{aligned}
$$

If a square matrix has a left (or right) inverse, then it also has a right (left) inverse and they are equal. ${ }^{1}$ We can now conclude that the formula given is indeed an inverse for $A+\mathbf{u v}^{\top}$.

[^0]
[^0]: ${ }^{1}$ If $A B=\mathbb{1}$, then $1=\operatorname{det} A B=\operatorname{det} A \operatorname{det} B$ so we know B is nonsingular. $B A B=B \Longrightarrow(B A-\mathbb{1}) B=$ $0 \Longrightarrow B A=\mathbb{1}$

