Numerical Analysis Assignment 1

Name: Nate Stemen (20906566)

Email: nate.stemen@uwaterloo.ca

[ Problem 1 ]_ ................................................................

x](p) _

and with eigenvalues

Eigenvalues and eigenvectors of the 1D Laplacian.
(a) Show that the 1 eigenvectors are given by the vectors x() with components

sin(jprth)
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Ay = = (cos(prh) — 1).

h2

(b) Verify the functions u(P)(x) = sin(p7rx) with p € N are eigenfunctions of
the continuous differential operator d? /dx? on domain [0, 1] with boundary
conditions #(0) = 0 = u(1).

(c) Compare the eigenvectors and the eigenvalues for the discrete and continu-
ous operators and comment. Are the discrete and continuous eigenvalues
similar for small values of h - p?

...........................................................................

Solution. ?? We start by verifying the the eigenvectors and eigenvalues given are

correct.

hZ

—2sin(pmth) 4 sin(2p7th)
1 |sin(prth) — 2sin(2pmth) + sin(3pth)

-2

sin(prth)
sin(2prh)

sin((n _ 1)prth)
sin(nprth)

sin((n —1)prth) — 2sin(nprh)

That isn’t actually that helpful though except to get an idea what we're looking at (but I
already typed it up). Lets instead compute a general element (Ax(?)) j as follows. We
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use ¢ = prth to make the trig identity easier to see.

(AXP)); = o (sin((j — 1))  2sin(jg) + sin((j + 1))

1o .
= 32 (=2sin(jg) +sin(jg + ¢) +sin(jg — ¢))

= %(—2 sin(jp) + 2sin(j@) cos(¢)) (by product to sum identity)
= %(cos(pnh) — 1) sin(jprh)
= Aysin(jpmh) = /\p(x(p))j

It’s worth noting that the first and last elements of x(P) are slightly different because
they don’t get 3 terms, but the above calculation still works. For the first element
(Ax(P)); the first sin term disappears because sin0 = 0, and for (Ax(P)),, the last sin
term vanishes because (n +1)h = 1 and sin(nm) = 0.

?? Firstit’s simple to verify the boundary conditions because sin0 = 0 and sin(p7) =
0 for p € IN. Now to show it’s an eigenvector of the second derivative operator.

AP
d—zu(p)(x) = ;77'(i cos(prtx) = —pznasin(prcx) = A,uP)(x)
dx? dx P
So the eigenvalues here are A, = —p?7t°.

?? At first glance the eigenvectors look very similar for these two problems, but
the eigenvalues look quite different. However if we make n very large (make the
numerical grid much finer) then we can use the Taylor series for cos get get the follow
approximation.

2 2 22 h?
h—z(cos(pnh) —-1) ~ 2 (1 .y T (’)<h4> - 1)

_ _pznz + O<h2>

So in the limit n — oo we do recover the continuous eigenvalues which is a sign we are
doing something right.
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[ Problem 2 ]. ................................................................ .
i Find the LU decomposition of
| 1 4 7 5
! A=|2 5 8 5
E 3 6 10 |
' and briefly explain the steps. i
Solution.

L u
1 4 71 T1 0 0] [un up  wus)
2 5 8 = 121 1 0 0 Uno Uun3
3 6 10 _131 l32 1 0 0 Uzsz
[ u Uiz Uis
= |Inun liuqp + ux l1uqz + ux3
| I3iurr Iziuip + Doy I3qugz + Isounz + 33

With this we can immediately see 117 = 1,u1p = 4,u13 = 7,11 = 2 and I3; = 3. We
can then plug these numbers into the other 4 equations to work out the rest of the
components. With that we obtain the following lower and upper matrices.

1 0 0 1 4 7
L=12 1 0 u=10 -1 -6
3 6 1 0 0 25
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[ Problem 3 ] .................................................................
; Computational work for recursive determinant computation. !
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Solution. Using the following recursive definition of the determinant
n . .
detA = Z(—l)’ﬂalj det(A,']')

we can calculate the work needed to compute the determinant of an n x n matrix as
W,.

n

=Y (IM+ W,_1) = n(1+ W,_1)
i=1

In order to solve this recursive recurrence relation it is helpful to expand it out a few
times.

Wy = n(1+ W,_1)
=n(1+n—-1)1+(n—-2)(1+W,_3)))
=n+nn—1)4+nn—-1)n-2)+nn—-1)(n—2)W,_3
. n! n! n!
= HCEIRECER]

(n—1)!
Writing the expression in the last form allows us to more easily see a pattern arising. We
are summing progressively less “cut off” forms of the factorial which can be expressed
as follows. I know the base condition of W, = 3, but not exactly sure how to put that in

here.
n—1 1
W, = n! <k—21 T 1)

In the limit of large n this approaches W, = (e + 1)n!. Nice... but also very expensive!

anB
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[ Problem 4 ]. ................................................................

i Vector norm inequalities.
' Show that ||x||, < ||x]|; < n]|x||, for x € R".

-

Solution. First, let j be the index with maximum absolute value. That is |x;| =
max; [ %] = ||| o-

Ixlleo = max [x;]

n
< |xj‘ + Z | x| (bc second term is positive)
i=1
i#]

n
=) |xil = [Ix[ly
i=1

n
< gn‘xj} (be |xj| > |x;| for all i)
=

n
=nY |xj| = nllx]. =
i=1
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[ Problem 5 ]. ................................................................

Matrix norm formula.
Let A € R™ " Show that

IA]l; = max Z i

1<j<n

Solution. We begin by showing the 1-norm of a matrix must be less or equal to the
maximum absolute column sum. Once that is established we will find a vector that
brings the matrix norm up to that bound, which shows the maximum can be attained
and hence the equality true.

n n
[AX]ly = ) | aijx
i=1|j=1

< 23 ||
i

< X[ X fai)
] 1

< |mEi | Z s

H/_/
HXH1

If we use the the following definition of the matrix norm [|A[|; = max =1 [[Ax]l;,
then the last term in the above inequality vanishes (goes to 1) and hence we have
established the 1-norm of this matrix is always less than or equal to the maximum
absolute column sum.

Now let v be the index where the maximum absolute column sum lives (max; }_; ]a,-]- ] =
Y.i |laiy]). Choose x = e, where e, is the unit normal vector with 1 in the vth position,
and 0 everywhere else. Now we can evaluate the norm of A times this vector.

Axly = [Ael, = ¥
1 )
= Z|aiv|
= max 3o

1<]<n

Clearly ||e,||; = 1, so we’ve found a vector on the unit sphere that attains the maximum
which shows the equality of the given statement.
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[ Problem 6 ] .................................................................

Inverse update formula.
Let A € R"*" be a nonsingular matrix, and u, v € R". Show that if A + uvT is
nonsingular, then it’s inverse can be expressed by the formula

1
14 viA-lu

...........................................................................

(A+uvT) =41 A luvTA™!

Solution. We start by showing 1 + vIA~lu # 0 by contradiction. So assume 1 +
viIA~lu =0.
1+vIA =0
utuvTA lu=0
(1+uvTau=0
1+uvTA™l =0""
A+uvl =0""

Where we’ve arrived at a contradiction on the last equation, because we took A 4+ uvT
to be nonsingular (and hence not be the 0 matrix).
With this proved we can now show the formula is indeed an inverse. For notational

: _ 1
convenience we use x = TviA Ta-

1
14+viA=lu
—l—auvTA 1+ uviA ! —quvTA luvTA!

=1+ u(—(x +1-— zvaA_lu> viA~!

(A+uvT) (A1 — AluvTAl)

=1+ u(l + —u [1 + VTA_lu] >VTA_1
=1+u(l-1)viA =1

If a square matrix has a left (or right) inverse, then it also has a right (left) inverse and
they are equal.! We can now conclude that the formula given is indeed an inverse for
A+uvl.

'If AB =1, then 1 = det AB = det A det B so we know Bisnonsingular. BAB =B = (BA—1)B =
0 = BA=1



