Numerical Analysis Assighnment 3

Name: Nate Stemen (20906566) Due: Fri, Nov 27, 2020 5:00 PM
Email: nate.stemen@uwaterloo.ca Course: AMATH 740
[ Problem 1 ] ________________________________________________________________ .
Consider the CG method for Ax = b with A SPD. Show that, in the update
formula

X = Xg—1 + &kPr—1,

CG chooses the step length that minimizes ¢(x) along direction p;_1, as in
steepest descent,

d
qu(Sb(Xk(“k)) =0.
(a) Show that this requires step length

r]I_1pk—1
T T Api,
Pr—14Pk-1

(b) Using properties we showed in class for the CG method, show that his «;
equals the a; used in the CG algorithm:

T

o = T 1Tk-1
=T
Pr_14Pk-1

...........................................................................

Solution. (a) Let’s first recall the following derivative:

% (x) = % %XTAX - bTx-i—c} =xTA—-DbT.

With that let’s calculate the derivative of ¢ with respect to ay.

%‘P(Xk(“k)) = ¢’ (xe(ax))Pr—1

= ¢’ (Xg—1 + 0kPr—1)Pr—1
= _x,I_lA + apl A — bT} Pr_1

= |=(b—Ax_)T+ “kP;I_1A} Pr-1

= |-1l_, + vckp,I_lA} Pk—1
= —1]_1Pk-1+ %Pj_1APr-1

Setting this equal to 0 we can move one term over and divide by the other to obtain

N r}I_1Pk—1
k= 7 1
Pk_1APk—1
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(b) First, remember we have py = 1 + Brpr_1- Also, recall Ry and Py as defined
on page 69 of the courses notes are equal. This means we can write py as a linear
combination of of the r;’s with i € {0,...,k}.

.
0 1Pk—1 = ¥} _1(tk—1 + Br—1Pk—2)
T
=1 1Tk—1 + Br-1Tf_1Pk—2

k—2

T T
= 1] 1+ Beoat] g ) ait;
i=0

.
= I 1Tk—1

Where we’ve used the fact that r]rj = 0 when i # j. Thus we can conclude the above
forms of aj are equivalent.
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Write the following third-order ODE as a first-order ODE system:

Problem 2 | ...
y"(x) +3y" (x) — 4y (x) + 7y(x) = > +7,

and give the system in matrix form.

Solution. Let’s first define the following functions:

Nate Stemen

y1(x) = y(x) y2(x) =y (v) ya(x) =y (x).

We then have the following relations between them.

y1(x) —y2(x) =0 yh(x) —y3(x) = 0.

This allows us to construct the following matrix system

v’ 0 1 07w 0
vl =10 0 1 ||p|—] 0
Y3 -7 4 3| |y3 x2+7

This is equivalent to the above third order ODE.
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[ Problem 3 ] .................................................................
Consider the Ralston method for ODE ' = f(x,y): E

kl = f(xn/]/n)/ :
ko= £t + 2h,yu + 2hk |
2= f Xn B /yn B 1)/ :

1 3
Yuer = Yn +h(1k1 " Z’Q)-

E Show that the local truncation error at x,,11 given by I,,11 = §(x41) — Ynt1, iS E
i O(h?). (Note: We assume as usual that f and it's derivatives are sufficiently |
smooth and bounded. The Ralston method is a 2-stage RK method.) '

Solution. To begin, let’s expand k; to order 1 (we don’t need beyond this because it’s

multiplied by & in the equation for y,11). Here we use the notation a 2y to mean
a=b+ O(h").

2 2
W2 2h 2hk
= f(xn,yn) + ?fx(xnryn) + 3 1fy(xnfyn)

2 2h 2hk
Skt ?fX(xnrl/n) + Tlfy(xnz}/n)
Now let’s expand §(x,, 1) to order h2.

3 h?
= 9(xn) + b (x) + 59" (xa)
h2 d
= l/n +hf(xXn,yn) + 2 dx (20, 9(xn))

U Yn +hf(xn,yn) + E [fx(xnr )(xn)) + fy(xn, 9 ) (x2)) 3 (xn)]
5 2
e Yn +hf(xn,yn) + h? fxGens yn) =+ fy (n, y) (X, yn) ]

h2
h—yn‘*’hkl‘i‘ [fx(xn/]/n)+k1fy(xn/yn)]

(xp41)

Now let’s try and calculate the local truncation error.
U1 = G(xnt1) — }/n+1

1 3
_yn+hk1—|— [fx(xn/yn)+k1fy(x”’y”)] ~Yn h(1k1+1k2)
3 3 I >

= _hkl + = [fx(xnzyn) + klfy(xn/yn)] - thz

w3 hz 3 h? h2k

= _hkl + = [fx(xn/yn) + klfy(xn/]/n)] - thl - Efx(xn/yn) - Tlfy(xn/yn)
e O
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Thus we can conclude ¢, 41 is O (1®).
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[ Problem 4 ] .................................................................
Consider numerical method

Yny1 = Yn +hf(xn + (=)l nyn + (1 =1)ynr1) 1 €10,1]

for ¥ = f(x,y). Show that the local truncation error I,;1 = O(h?) for any
1 € [0,1]. Is there a value of 7 for which I, = O (h%)?

(Note: We assume as usual that f and it’s derivatives are sufficiently smooth and
' bounded.)

...........................................................................

Solution. The first thing we will do (which is the thing that took me the longest to
figure out), is rewrite the second argument of f.

yn+ (1 =1)Yns1 = Yn+ (1 =1)(Yn+1 — Yn)

This allows us to get that pesky 1 out of our way so we can Taylor expand properly.
We'll start by expanding y,, 11 up to order /2.

Yni1 = Yn +hf(xn + (T =1l yn + (1= 1)(Yns1 — Yn))
R [FGon ) + fe ) L=+ Fy (o, ) (1= 1) (i1 — yir)]

Here we use our formula for v, and subtract over y, to obtain an equation for the
difference. We know to first order f(x, + (1 —n)h, nyn + (1 —1)yns1) = f(Xn, yn) from
our above expansion, so we can simply use that since we don’t want higher order terms
of h.

Va1 = Y+ B [F G ) + FeCon ) (1= 1)+ Fy (on ) (1= 1)If ()]

Now we expand the perfect answer.

hZ
9(xn) +9/(xn)h + ﬁll(xn)j
& W2 d
= Yn + f(Xn,yn)h + o af(xry(x))

X=Xy

. 1
G(xpg1) =

s 2
h: Yn +f(anyn)h + h?(fX(Xn/ yn) + fy(xnfyn)y/(x”))

Now we can take their difference.
£n+1 = yA(xn+1) —Yn+1
w h 2 2
= 5 (et fyuf) = (L =mh* = fu f(1 =)k
3 h?
2 (=5 ) Ut £uf)

From here we can see ¢, is always O (hz) (because the ! terms cancelled out) and
when 7 = hz—z, then ¢, 4 is (’)(h3).
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[ Problem 5 ]. ................................................................

You are given the ODE

| y'(x) = f(xy)
with explicit knowledge of f(x, y) as a function of x and y. Assume that, given the
initial condition vy = y(xp), you need a starting value for y; at x; = xo + h that is
accurate with order #*. Find an explicit method for calculating such an accurate
starting value v, using only evaluations of f(x,y) and it’s partial derivatives at
xp. (Hint: as always, Taylor is your best friend.)

-

Solution. Not much to say here, so let’s just get into the calculation.

y1=y(x1) =y(xo+h)
nt / h? " K3 "
= y(xo0) +hy'(xo0) + >V (x0) + arY (x0)
p n2 d n d2
= yo + hf(xo,y0) + S dx (x,y(x)) . + a1 @f(x,y(x))

x X=X

Now let’s calculate each of the last two terms separately so we avoid a giant mess.

2 2
7 e/ ) o T elxo, o) + oo, o)y ()]
2
- hf[ x(x0,y0) + fy (x0, ¥0) f (%0, y0) ]

3

h3 d? h
=3 [frx(x0,y0) + fyx(x0, v0) f (X0, y0) + fy(x0,y0) fx(x0, Yo)

ar @f(x,y(x))

b (0900 (x0) + fyy (30, 50)f (2 90)Y (x0)
+fy(x0, ¥0) fy (x0, o)y (x0) ]

3
- %[fxx +fyxf+fyfx+fxyf+fyyf2+f;f}
3

Where I've taken away all the function parameters because they’re all (xg,yo). So,
putting this all together we have

K h & 2 42
15 o+ hf + 5 [fe+ fuf |+ 57 [ fr+ 2fnf + fufi + funf? + i ).
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[ Problem 6 ]. ................................................................
Find the region D of absolute stability for the backward Euler method

Yni1 = Yn + 1f (Xni1, Ynt1)

in the complex hA plane.
(Note: this is an implicit one-step method, and can be derived similar to the
forward Euler method.)

e

Solution. As per the “test equation” we have

Ynt1 = Yn + 1f (X1, Ynt1)
=Yn+ h/\]/n—i-l
_ _Yn
1-hA
Yo
(1—hA)"

Thus for stability we have
1 < |1—hA|.

Thus our region of stability is D = {z € C | Re(z) < 0} = C_.
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[

roblem 7 ] .................................................................
Consider the Ralston method

ki = f(xun,Yn),
ky = +2h +2hk
Z—f Xn 5 'y Yn 5 1]/

1 3
Ynt1 = Yn + h(zkl + Zkz)'

(a) Show that the region D of absolute stability for this method in the complex
hA plane is described by the condition

]1 +h)»+h2/\2/2‘ <1

(b) Consider this inequality for the case of real A < 0, and derive an upper
stability bound for the step length h.

P

Solution. (a) In order to find the region of stability we take the model equation y'(x) =
Ay(x). This translates into k; = f (x4, yx) = Ayy,. In order to start this problem we start
by simplifying the k, term.

2 2

ky = f(xn + gh/yn + ghf(xn/yn))
2 2
2

Now we can take a look at the expression for v, 1.

Y1 = Yn + h(AZ” + % {yn + %MynD
=y iy 2122y,
— (1 +hA + %hz/\2>yn
Thus for stability we require

‘1 +hA + %hz)\z <1.
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(b) Let A = — where ¢y € R+y.
1o
1—h’y—|—§h’y <1
1
—h'y+§h272<0
2

h -
<2

10
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