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In these notes we work to understand the action of quantum twirling and it’s implementation
which leads naturally into the development of unitary t-designs. Throughout we provide some of
the mathematical detail needed to base our work on.

1 Preliminaries

It’ll be helpful to have some concepts defined before we try and understand unitary designs in full.

Definition 1.1. Let P1 be the standard 1 qubit Pauli group generated by X, Y, Z as seen in Emerson
[2021]. Define, in general, the (n qubit) Pauli Group to be the n-fold tensor product of P1 with itself.
That is Pn = P⊗n

1 . This naturally forms a group under matrix multiplication and can be shown to
be generated by Xi and Zi (where i ranges to n).

Definition 1.2. The Clifford group is the set of unitary matrices1 that leave the Pauli group
unchanged upon conjugation:

Cn :=
{

U ∈ U(2n) : UPnU† = Pn

}
. (1)

Again, this naturally forms a group under matrix multiplication.

2 Twirling

Let HA and HB be Hilbert spaces, and denote by L(H) by the set of linear operators on H. Given a
quantum channel Λ : L(HA) → L(HB), then we can define twirling Λ with respect to the unitary
group as

T [Λ](ρ) :=
∫
U(n)

U†Λ(UρU†)U dη(U) (2)

1Equipped with the group operation of matrix multiplication
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where η is the unique unitary invariant measure on U(n) called the Haar measure. In fact a Haar
measure can be constructed on any locally compact topological group, but we will not go further
than the unitary group here. To better understand this integral we will have a quick aside on what
the Haar measure is, and why it’s necessary.

2.1 The Haar Measure

The set of all ideal operations that one can perform on n qubits—also known as the Unitary group
U(n)—has some very nice properties that allow us to define integration on this space. In particular
the group is compact which can be seen from the fact that UU† = 1 for all U ∈ U(n) and hence the
column vectors U =

[
u1 · · · un

]
are orthonormal for all U. Thus each U is characterized by n

points on the surface of a hypersphere. This implies, when embedded into R2n2
, U(n) is a space of

finite volume, and by the usual Lebesgue integral in RN , we can integrate over U(n). That said, this
sense of measure inherited from RN is not invariant under the action of an element U ∈ U(n). To
make it invariant, we use something similar to “Weyl’s Unitary Trick” to average measure over the
action of each element in U(n). One can then show this is first of all invariant under unitary action2,
and is also the unique up to a complex number which explains why we say the Haar measure.

2.2 A simple example

Suppose we have a 2-level quantum system represented by ρ. We can then take the identity channel
Î(ρ) = 1ρ1 = ρ and twirl it to see it’s effect. Here we denote superoperators with a hat Û and their
action is defined as Û(ρ) = UρU†.

T [ Î](ρ) =
∫
U(2)

U† Î(UρU†)U dη(U) =
∫
U(2)

ρ dη(U) = ρ = Î(ρ) (3)

2.3 Implementing Twirls

As we’ve seen twirling quantum channels can yield lots of useful information about a channel
and it’s properties, but the question of implementing such a thing remains. As modern quantum
computers stand, doing an arbitrary unitary U ∈ U(n) is nearly impossible to do efficiently.
In Emerson et al. [2003] the authors find an algorithm to implement a random unitary gate using
O
(
n222n) single and double qubit gates. Not only is this exponential, but if we had to do this for

all unitaries (or even an ε-net for that matter) we would need significantly more compute power
than we have now. This leads naturally to the question: can we find a finite set of unitaries that
“represent” or “simulate” the entire unitary group? If we could such a set that reproduced some of
the statistical properties of U(n), then we might have a way to physically realize a twirl. Luckily,
mathematicians have been studying the objects we need for sometime, albeit in different contexts,
in the form of designs.

2By both multiplication from the left and right.
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3 Designs

The original concept of a design came in the form of spherical t-designs introducted by Delsarte
et al. [1977]. In particular the authors were interested in real polynomials whose average over
a set of points in real Euclidean space was invariant under all orthogonal transformations. This
notion was shown to be equivalent to sets of N points xi ∈ Rn such that for all real polynomials f
of degree t we have ∫

Sn−1
f (x)dω(x) =

1
N

n

∑
i=1

f (xi) (4)

where Sn−1 ⊂ Rn is the (n − 1)-sphere, and dω is an appropriated normalized measure on Sn−1. In
other words, we can find the average values of any polynomial on the sphere by looking at these
particular n points.

In Renes et al. [2004] the authors generalized this idea to polynomial functions operating on
quantum states |ψ⟩ instead of points in Euclidean space. Again in Dankert et al. [2009], the idea
is taken a step further to polynomial function of unitary operators U. In particular Dankert et al.
[2009] gives the following definition.

Definition 3.1. A unitary t-design (of dimension n) is a finite set {Ui}k
i=1 ⊂ U(n) such that for all

polynomials f(t,t)(U) of degree t in the matrix elements of U, and degree t in the complex conjugate
of those matrix elements we have

∫
U(n)

f(t,t)(U)dη(U) =
1
k

k

∑
i=1

f(t,t)(Ui). (5)

Here η represents the unique unitary invariant measure called the Haar measure on U(n).

A particularly interesting example is t = 2-designs where we have the following equivalent
characterziation due to Gross et al. [2007].

Theorem 3.1. A set {Ui}k
i=1 is a unitary 2-design if and only if for any quantum channel Λ we have

1
k

k

∑
i=1

U†
k Λ(UkρU†

k )Uk =
∫
U(n)

U†Λ(UρU†)U dη(U) (6)

This result gives us a much more manageable way to implement a twirling operation since we no
longer have to try to implement every possible unitary. The next natural question to ask then is do
we know of any 2-designs? Thankfully Zhu [2015] showed that in fact the Clifford group defined
in definition 1.2 is a 3-design. Well a 3-design is not a 2-design, but thankfully if we have a t-design
we have for free an s-design for an s ≤ t by the fact that a degree s polynomial can always be a
degree t polynomial with 0 as coefficients for any degree n > s.

The Clifford group is an important group in quantum information theory not just because it
normalizes the Pauli group, but as shown in Gottesman [1998], circuits using only the Clifford
group can be efficiently simulated on a classical computer. Clifford circuits have also been shown
to to be in a much smaller computational complexity class (⊕L) than the full power of quantum
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computers (BQP) Aaronson and Gottesman [2004].3 These facts demonstrate that even though
the Clifford group “represents” the entire unitary group in some statistical ways, it is not strong
enough to do universal quantum computation.

3Although, like many things in theoretical computer science, they have not been shown to be completely distinct
classes, even though it is believed by many in the field.
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