
Open Quantum Systems Assignment 1

Name: Nate Stemen (20906566) Due: Mon, Feb 22, 2020 11:59 PM
Email: nate@stemen.email Course: AMATH 876

Exercise 2.2
Show that the reduced state obtained via partial trace is a density operator, i.e., a
non-negative operator satisfying tr ρ̂A = 1.

Solution. Take ρ̂AB to be a density operator on Hilbert space HAB. In a (tensor product)
basis this looks like

ρ̂AB = ∑
i,j,k,ℓ

pijkℓ |ai⟩ ⊗ |bj⟩ ⟨ak| ⊗ ⟨bℓ|

In order to get a condition on it’s coefficients pijkℓ we’ll take it’s trace and force it to be
1.

tr ρ̂AB = ∑
n,m

⟨an| ⊗ ⟨bm|
[
ρ̂AB

]
|an⟩ ⊗ |bm⟩

= ∑
n,m,i,j,k,ℓ

pijkℓ δin δjm δkn δℓm

= ∑
i,j

pijij = 1 (∗)

We’ll start by computing ρA in this basis.

trB ρ̂AB = ∑
n

1 ⊗ ⟨bn|
[
ρ̂AB

]
1 ⊗ |bn⟩

= ∑
n,i,j,k,ℓ

pijkℓ δnj δℓn |ai⟩⟨ak|

= ∑
n,i,k

pinkn |ai⟩⟨ak|

Now we can ensure tr ρ̂A = 1.

tr ρ̂A = ∑
ℓ

⟨aℓ|
[
ρ̂A

]
|aℓ⟩

= ∑
ℓ,n,i,k

pinkn δℓi δkℓ

= ∑
ℓ,n

pℓnℓn

Hence by eq. (∗) we can conclude tr ρ̂A = 1.
To show ρ̂A is positive semi-definite we can use the fact that the sum of the diagonal

terms of a density operator are both real and positive. Real because density operators

1

mailto:nate@stemen.email


Open Quantum Systems Assignment 1 Nate Stemen

are Hermitian and positive because they are probabilities.

⟨ϕ|ρ̂A|ϕ⟩ = ∑ ϕn ⟨an| pijkj |ai⟩⟨ak| ϕn |an⟩
= ∑ |ϕn|2pijkj δni δkn

= ∑
ij
|ϕi|2︸︷︷︸
∈[0,1]

pijij︸︷︷︸
∈R

≥ ∑
ij

pijij = 1 ≥ 0

Hence we’ve shown the partial trace trB : L(HA ⊗ HB) → L(HA) preserves density
operators.
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Exercise 2.3
Prove that these three pure-state conditions are equivalent.

Solution. First we’ll show ρ̂2 = ρ̂ =⇒ tr ρ̂2 = 1 .

tr ρ̂2 = tr ρ̂ = 1

Next we have tr ρ̂2 = 1 =⇒ ρ̂ = |ψ⟩⟨ψ| . Let’s first calculate ρ̂2 in an othormal basis.

ρ̂2 =

(
n

∑
i=1

pi |i⟩⟨i|
)2

=
n

∑
i=1

pi |i⟩⟨i|
n

∑
j=1

pj |j⟩⟨j|

=
n

∑
i,j=1

pi pj |i⟩ ⟨i|j⟩ ⟨j| ⟨i|j⟩ = δij

=
n

∑
i=1

p2
i |i⟩⟨i|

Now taking the trace of ρ̂2 we get a condition on the pi’s.

tr ρ̂2 =
n

∑
k=1

⟨k| ρ̂2 |k⟩

=
n

∑
k,i=1

⟨k|
(

p2
i |i⟩⟨i|

)
|k⟩

=
n

∑
i=1

p2
i = 1

So ∑ pi = 1 = ∑ p2
i . By basic properties of real numbers, we know p2

i ≤ pi when
pi ∈ [0, 1] and equality only holding when pi ∈ {0, 1}. Using this fact we can write

n

∑
i=1

p2
i ≤

n

∑
i=1

pi

where again equality only holds if pi ∈ {0, 1} for all i. The only way this can be true is
if one of the pi’s is 1 and all of the rest are 0. In that case our summation collapses to
one term, and we are left with ρ̂ = |i⟩⟨i| as desired.

Lastly we have ρ̂ = |ψ⟩⟨ψ| =⇒ ρ̂2 = ρ̂ .

ρ̂2 = (|ψ⟩⟨ψ|)(|ψ⟩⟨ψ|) = |ψ⟩ ⟨ψ|ψ⟩︸ ︷︷ ︸
1

⟨ψ| = |ψ⟩⟨ψ| = ρ̂
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Exercise 2.5
Prove the existence of the Schmidt decomposition.

Solution. Let {|ai⟩} be an orthonormal basis for HA and {|bi⟩} be an orthonormal
basis for HB. We then know |an⟩ ⊗ |bm⟩ forms a basis for HAB = HA ⊗ HB, and hence
we can expand any vector |ψ⟩ ∈ HAB as

|ψ⟩ = ∑
ij

ψij |ai⟩ ⊗ |bj⟩ .

We can think of the coefficients ψij as a matrix using the association |ai⟩ ⊗ |bj⟩ ∼=
|ai⟩⟨bj|.1 This operator is then taking an element of HB to an element of HA. That is we
can think of the vector |ψ⟩ as a linear map |ψ⟩op : HB → HA.

With this picture in place we can apply the singular decomposition to write

|ψ⟩op =
r

∑
n=1

λn |an⟩⟨bn|

where r is the rank of |ψ⟩op the operator. Now we can map back into |ψ⟩ again using
|an⟩⟨bm| ∼= |an⟩ ⊗ |bm⟩ and see we have

|ψ⟩ =
r

∑
n=1

λn |an⟩ ⊗ |bn⟩ .

1Using the underlying isomorphism of U∗ ⊗ V and the space Hom(U, V) of linear maps from U to V.
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Exercise 3.1
Prove the two properties given by Eqns. 3.1.

Solution. First we’ll show ∑ν Eν = 1.

∑
ν

Eν = ∑
ν

trB (Πν · 1A ⊗ ρ̂B)

= trB

(
∑
ν

Πν · 1A ⊗ ρ̂B

)

= trB

([
∑
ν

Πν

]
· 1A ⊗ ρ̂B

)
∑
ν

Πν = 1A⊗B

= trB(1A ⊗ ρ̂B)

= 1A

Now we’ll show Eν ≥ 0, but first we need some setup. Since Πν is a projector, by the
spectral theorem it can be written as

Πν = ∑
ij

λij
∣∣aibj

〉〈
aibj
∣∣

where λij are real and non-negative. We also have ρ̂B = ∑ pn |bn⟩⟨bn| and 1A =
∑ |an⟩⟨an|.

Πν · 1A ⊗ ρ̂B = ∑ λij pn
∣∣aibj

〉 〈
aibj
∣∣aℓbn

〉
⟨aℓbn|

= ∑ λij pn δiℓ δjn
∣∣aibj

〉〈
aℓbn

∣∣
= ∑

ℓn
λℓn pn |aℓbn⟩⟨aℓbn|

Now we can take the partial trace over B.

trB (Πν · 1A ⊗ ρ̂B) = ∑ 1A ⊗ ⟨bi| λℓn pn |aℓbn⟩⟨aℓbn| 1 ⊗ |bi⟩
= ∑ λℓn pn |aℓ⟩⟨aℓ| δin δni

= ∑
ℓn

λℓn pn |aℓ⟩⟨aℓ|

Now finally we can can take the expectation values to show Eν is positive semi-definite.
I’m a little iffy if this actually works. I feel like there should be a more elegant way

to show Eν is positive semi-definite, but I can’t come up with anything.
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Exercise 3.2
Apply Naimark’s theorem to identify a PVMa in an extended Hilbert space that
generates the trine.

aProjection-Valued Measure

Solution. We’d like to find a set of operators {Fi} such that FiFj = Fiδij and ∑i Fi = 1

that are built from the operators Eν. First recall the trine states:

|χ0⟩ = |0⟩ |χ1⟩ =
1
2
|0⟩ −

√
3

2
|1⟩ |χ2⟩ =

1
2
|0⟩+

√
3

2
|1⟩

Now we can calculate the POVM2s as follows.

E0 =
2
3
|χ0⟩⟨χ0| =

2
3

[
1 0
0 0

]
E1 =

1
6

(
|0⟩⟨0| −

√
3 |0⟩⟨1| −

√
3 |1⟩⟨0|+ 3 |1⟩⟨1|

)
=

1
6

[
1 −

√
3

−
√

3 3

]
E2 =

1
6

(
|0⟩⟨0|+

√
3 |0⟩⟨1|+

√
3 |1⟩⟨0|+ 3 |1⟩⟨1|

)
=

1
6

[
1

√
3√

3 3

]
Now we’ll look for a U satisfying U†(1 ⊗ Eν)U. Indeed we can define (by the positive-
ness of Eν)

U =
√

E0 ⊗ e0 +
√

E1 ⊗ e1 +
√

E2 ⊗ e2.

Where ei are the standard basis elements of C3. This is indeed an isometry (U†U = 1)
as

U†U =
(√

E0 ⊗ e†
0 +

√
E1 ⊗ e†

1 +
√

E2 ⊗ e†
2

)(√
E0 ⊗ e0 +

√
E1 ⊗ e1 +

√
E2 ⊗ e2

)
= E0 ⊗ e†

0e0︸︷︷︸
1

+E1 ⊗ e†
1e1 + E2 ⊗ e†

2e2

= E0 + E1 + E2 = 1

Thus we take Fi = U†(1 ⊗ Ei)U.

2Positive Operator-Valued Measure
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Exercise 3.3

(a) Verify that the map E defined in terms of projectors onto coherent states in
the example above satisfies the postulates of a POVM.

(b) What is the operational interpretation of Pr(X) = tr(E(X)ρ) for this POVM,
noting that α = (⟨q⟩ , ⟨p⟩) denotes the expectations of the position q and
momentum p operatores in the associated coherent state, and that Ω = R2

means we are measuring the position and momentum of some particle?

Solution. (a) To show E(X) defines a valid POVM we need to show

1. E(X) ≥ 0

2. E(R2) = 1

3. E(
⋃

i Xi) = ∑i E(Xi)

1

⟨ψ|E(X)|ψ⟩ = 1
π

∫
X

d2α ⟨ψ|α⟩ ⟨α|ψ⟩ = 1
π

∫
X

d2α |⟨α|ψ⟩|2︸ ︷︷ ︸
≥0

≥ 0

This applys for all vectors |ψ⟩, so we conclude E(X) is positive semi-definite.

2

This point is satisfied by the resolution of the identity given in the example prior to the
question:

E(R2) =
1
π

∫
R2

d2α |α⟩⟨α| = 1

3

Because the Xi are disjoint, the additivity of the Lebesgue integral allow us to split the
integral into pieces as follows.

E

(⋃
i

Xi

)
=

1
π

∫
⋃

i Xi

d2α |α⟩⟨α| = ∑
i

1
π

∫
Xi

d2α |α⟩⟨α| = ∑
i

E(Xi)

The convergence of the (possibly) infinite sum is guaranteed by first using the above
manipulation on the first n sets Xi and then taking the limit.

(b) The operational interpretation of Pr(X) = tr(E(X)ρ) is that this is the probability
of finding the particle in and maybe around the state space region X.

7


	Exercise 2
	Exercise 3
	Exercise 5
	Exercise 1
	Exercise 2
	Exercise 3

