Open Quantum Systems Assignment 1

Name: Nate Stemen (20906566) Email: nate@stemen.email

Due: Mon, Feb 22, 2020 11:59 PM Course: AMATH 876

Exercise 2.2

Show that the reduced state obtained via partial trace is a density operator, i.e., a non-negative operator satisfying tr $\hat{\rho}_A = 1$.

Solution. Take $\hat{\rho}_{AB}$ to be a density operator on Hilbert space \mathcal{H}_{AB} . In a (tensor product) basis this looks like

$$\hat{
ho}_{AB} = \sum_{i,j,k,\ell} p_{ijk\ell} \ket{a_i} \otimes \ket{b_j} ra{a_k} \otimes ra{b_\ell}$$

In order to get a condition on it's coefficients $p_{ijk\ell}$ we'll take it's trace and force it to be 1.

$$\operatorname{tr} \hat{\rho}_{AB} = \sum_{n,m} \langle a_n | \otimes \langle b_m | \left[\hat{\rho}_{AB} \right] | a_n \rangle \otimes | b_m \rangle$$
$$= \sum_{n,m,i,j,k,\ell} p_{ijk\ell} \,\delta_{in} \,\delta_{jm} \,\delta_{kn} \,\delta_{\ell m}$$
$$= \sum_{i,j} p_{ijij} = 1 \qquad (*)$$

We'll start by computing ρ_A in this basis.

$$egin{aligned} &\operatorname{tr}_B \hat{
ho}_{AB} = \sum_n \mathbbm{1} \otimes \langle b_n | \left[\hat{
ho}_{AB}
ight] \mathbbm{1} \otimes | b_n
angle \ &= \sum_{n,i,j,k,\ell} p_{ijk\ell} \, \delta_{nj} \, \delta_{\ell n} \, | a_i
angle \! \langle a_k | \ &= \sum_{n,i,k} p_{inkn} \, | a_i
angle \! \langle a_k | \end{aligned}$$

Now we can ensure tr $\hat{\rho}_A = 1$.

$$\operatorname{tr} \hat{\rho}_{A} = \sum_{\ell} \langle a_{\ell} | \left[\hat{\rho}_{A} \right] | a_{\ell} \rangle$$
$$= \sum_{\ell,n,i,k} p_{inkn} \, \delta_{\ell i} \, \delta_{k\ell}$$
$$= \sum_{\ell,n} p_{\ell n \ell n}$$

Hence by eq. (*) we can conclude tr $\hat{\rho}_A = 1$.

To show $\hat{\rho}_A$ is positive semi-definite we can use the fact that the sum of the diagonal terms of a density operator are both real and positive. Real because density operators

are Hermitian and positive because they are probabilities.

$$\begin{split} \langle \phi | \hat{\rho}_A | \phi \rangle &= \sum \overline{\phi}_n \langle a_n | p_{ijkj} | a_i \rangle \langle a_k | \phi_n | a_n \rangle \\ &= \sum |\phi_n|^2 p_{ijkj} \delta_{ni} \delta_{kn} \\ &= \sum_{ij} \underbrace{|\phi_i|^2}_{\in [0,1]} \underbrace{p_{ijij}}_{\in \mathbb{R}} \\ &\geq \sum_{ij} p_{ijij} = 1 \ge 0 \end{split}$$

Hence we've shown the partial trace $tr_B : L(H_A \otimes H_B) \to L(H_A)$ preserves density operators.

Exercise 2.3

Prove that these three pure-state conditions are equivalent.

Solution. First we'll show $\hat{\rho}^2 = \hat{\rho} \implies \operatorname{tr} \hat{\rho}^2 = 1$.

 $\mathrm{tr}\,\hat{\rho}^2=\mathrm{tr}\,\hat{\rho}=1$

Next we have $\operatorname{tr} \hat{\rho}^2 = 1 \implies \hat{\rho} = |\psi\rangle\langle\psi|$. Let's first calculate $\hat{\rho}^2$ in an othormal basis.

$$\hat{\rho}^{2} = \left(\sum_{i=1}^{n} p_{i} |i\rangle\langle i|\right)^{2} = \sum_{i=1}^{n} p_{i} |i\rangle\langle i| \sum_{j=1}^{n} p_{j} |j\rangle\langle j|$$
$$= \sum_{i,j=1}^{n} p_{i} p_{j} |i\rangle\langle i|j\rangle\langle j|$$
$$\langle i|j\rangle = \delta_{ij}$$
$$= \sum_{i=1}^{n} p_{i}^{2} |i\rangle\langle i|$$

Now taking the trace of $\hat{\rho}^2$ we get a condition on the p_i 's.

$$\operatorname{tr} \hat{\rho}^{2} = \sum_{k=1}^{n} \langle k | \hat{\rho}^{2} | k \rangle$$
$$= \sum_{k,i=1}^{n} \langle k | \left(p_{i}^{2} | i \rangle \langle i | \right) | k \rangle$$
$$= \sum_{i=1}^{n} p_{i}^{2} = 1$$

So $\sum p_i = 1 = \sum p_i^2$. By basic properties of real numbers, we know $p_i^2 \le p_i$ when $p_i \in [0, 1]$ and equality only holding when $p_i \in \{0, 1\}$. Using this fact we can write

$$\sum_{i=1}^n p_i^2 \le \sum_{i=1}^n p_i$$

where again equality only holds if $p_i \in \{0, 1\}$ for all *i*. The only way this can be true is if one of the p_i 's is 1 and all of the rest are 0. In that case our summation collapses to one term, and we are left with $\hat{\rho} = |i\rangle\langle i|$ as desired.

Lastly we have $\hat{\rho} = |\psi\rangle\langle\psi| \implies \hat{\rho}^2 = \hat{\rho}$.

$$\hat{\rho}^2 = (|\psi\rangle\langle\psi|)(|\psi\rangle\langle\psi|) = |\psi\rangle\underbrace{\langle\psi|\psi\rangle}_{1}\langle\psi| = |\psi\rangle\langle\psi| = \hat{\rho}$$

Exercise 2.5

Prove the existence of the Schmidt decomposition.

Solution. Let $\{|a_i\rangle\}$ be an orthonormal basis for H_A and $\{|b_i\rangle\}$ be an orthonormal basis for H_B . We then know $|a_n\rangle \otimes |b_m\rangle$ forms a basis for $H_{AB} = H_A \otimes H_B$, and hence we can expand any vector $|\psi\rangle \in H_{AB}$ as

$$\ket{\psi} = \sum_{ij} \psi_{ij} \ket{a_i} \otimes \ \ket{b_j}.$$

We can think of the coefficients ψ_{ij} as a matrix using the association $|a_i\rangle \otimes |b_j\rangle \cong |a_i\rangle\langle b_j|$.¹ This operator is then taking an element of H_B to an element of H_A . That is we can think of the *vector* $|\psi\rangle$ as a linear map $|\psi\rangle_{op} : H_B \to H_A$.

With this picture in place we can apply the singular decomposition to write

$$|\psi\rangle_{\rm op} = \sum_{n=1}^r \lambda_n |a_n\rangle\langle b_n|$$

where *r* is the rank of $|\psi\rangle_{op}$ the *operator*. Now we can map back into $|\psi\rangle$ again using $|a_n\rangle\langle b_m| \cong |a_n\rangle \otimes |b_m\rangle$ and see we have

$$\ket{\psi} = \sum_{n=1}^r \lambda_n \ket{a_n} \otimes \ket{b_n}.$$

¹Using the underlying isomorphism of $U^* \otimes V$ and the space Hom(U, V) of linear maps from U to V.

Exercise 3.1

Prove the two properties given by Eqns. 3.1.

Solution. First we'll show $\sum_{\nu} E_{\nu} = \mathbb{1}$.

$$\begin{split} \sum_{\nu} E_{\nu} &= \sum_{\nu} \operatorname{tr}_{B} \left(\Pi_{\nu} \cdot \mathbb{1}_{A} \otimes \hat{\rho}_{B} \right) \\ &= \operatorname{tr}_{B} \left(\sum_{\nu} \Pi_{\nu} \cdot \mathbb{1}_{A} \otimes \hat{\rho}_{B} \right) \\ &= \operatorname{tr}_{B} \left(\left[\sum_{\nu} \Pi_{\nu} \right] \cdot \mathbb{1}_{A} \otimes \hat{\rho}_{B} \right) \\ &= \operatorname{tr}_{B} (\mathbb{1}_{A} \otimes \hat{\rho}_{B}) \\ &= \mathbb{1}_{A} \end{split}$$

Now we'll show $E_{\nu} \ge 0$, but first we need some setup. Since Π_{ν} is a projector, by the spectral theorem it can be written as

$$\Pi_{
u} = \sum_{ij} \lambda_{ij} \left| a_i b_j
ight
angle \left\langle a_i b_j
ight|$$

where λ_{ij} are real and non-negative. We also have $\hat{\rho}_B = \sum p_n |b_n\rangle\langle b_n|$ and $\mathbb{1}_A = \sum |a_n\rangle\langle a_n|$.

$$\Pi_{\nu} \cdot \mathbb{1}_{A} \otimes \hat{\rho}_{B} = \sum \lambda_{ij} p_{n} |a_{i}b_{j}\rangle \langle a_{i}b_{j}|a_{\ell}b_{n}\rangle \langle a_{\ell}b_{n}|$$

$$= \sum \lambda_{ij} p_{n} \delta_{i\ell} \delta_{jn} |a_{i}b_{j}\rangle \langle a_{\ell}b_{n}|$$

$$= \sum_{\ell n} \lambda_{\ell n} p_{n} |a_{\ell}b_{n}\rangle \langle a_{\ell}b_{n}|$$

Now we can take the partial trace over *B*.

$$\begin{aligned} \operatorname{tr}_B\left(\Pi_{\nu}\cdot\mathbbm{1}_A\otimes\hat{\rho}_B\right) &= \sum \mathbbm{1}_A\otimes\langle b_i|\,\lambda_{\ell n}p_n\,|a_\ell b_n\rangle\langle a_\ell b_n|\,\mathbbm{1}\otimes|b_i\rangle\\ &= \sum_{\ell n}\lambda_{\ell n}p_n\,|a_\ell\rangle\langle a_\ell|\,\,\delta_{in}\,\delta_{ni}\\ &= \sum_{\ell n}\lambda_{\ell n}p_n\,|a_\ell\rangle\langle a_\ell| \end{aligned}$$

Now finally we can can take the expectation values to show E_{ν} is positive semi-definite.

I'm a little iffy if this actually works. I feel like there should be a more elegant way to show E_{ν} is positive semi-definite, but I can't come up with anything.

Exercise 3.2

Apply Naimark's theorem to identify a PVM^{*a*} in an extended Hilbert space that generates the trine.

^aProjection-Valued Measure

Solution. We'd like to find a set of operators $\{F_i\}$ such that $F_iF_j = F_i\delta_{ij}$ and $\sum_i F_i = \mathbb{1}$ that are built from the operators E_{ν} . First recall the trine states:

$$|\chi_0
angle = |0
angle \qquad |\chi_1
angle = rac{1}{2} \left|0
ight
angle - rac{\sqrt{3}}{2} \left|1
ight
angle \qquad |\chi_2
angle = rac{1}{2} \left|0
ight
angle + rac{\sqrt{3}}{2} \left|1
ight
angle$$

Now we can calculate the POVM²s as follows.

$$E_{0} = \frac{2}{3} |\chi_{0}\rangle\langle\chi_{0}| = \frac{2}{3} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$E_{1} = \frac{1}{6} \left(|0\rangle\langle0| - \sqrt{3} |0\rangle\langle1| - \sqrt{3} |1\rangle\langle0| + 3 |1\rangle\langle1| \right) = \frac{1}{6} \begin{bmatrix} 1 & -\sqrt{3} \\ -\sqrt{3} & 3 \end{bmatrix}$$

$$E_{2} = \frac{1}{6} \left(|0\rangle\langle0| + \sqrt{3} |0\rangle\langle1| + \sqrt{3} |1\rangle\langle0| + 3 |1\rangle\langle1| \right) = \frac{1}{6} \begin{bmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 3 \end{bmatrix}$$

Now we'll look for a *U* satisfying $U^{\dagger}(\mathbb{1} \otimes E_{\nu})U$. Indeed we can define (by the positive-ness of E_{ν})

$$U = \sqrt{E_0} \otimes \mathbf{e}_0 + \sqrt{E_1} \otimes \mathbf{e}_1 + \sqrt{E_2} \otimes \mathbf{e}_2.$$

Where \mathbf{e}_i are the standard basis elements of \mathbb{C}^3 . This is indeed an isometry ($U^{\dagger}U = \mathbb{1}$) as

$$U^{\dagger}U = \left(\sqrt{E_0} \otimes \mathbf{e}_0^{\dagger} + \sqrt{E_1} \otimes \mathbf{e}_1^{\dagger} + \sqrt{E_2} \otimes \mathbf{e}_2^{\dagger}\right) \left(\sqrt{E_0} \otimes \mathbf{e}_0 + \sqrt{E_1} \otimes \mathbf{e}_1 + \sqrt{E_2} \otimes \mathbf{e}_2\right)$$

= $E_0 \otimes \underbrace{\mathbf{e}_0^{\dagger} \mathbf{e}_0}_1 + E_1 \otimes \mathbf{e}_1^{\dagger} \mathbf{e}_1 + E_2 \otimes \mathbf{e}_2^{\dagger} \mathbf{e}_2$
= $E_0 + E_1 + E_2 = \mathbb{1}$

Thus we take $F_i = U^{\dagger}(\mathbb{1} \otimes E_i)U$.

²Positive Operator-Valued Measure

Exercise 3.3

- (a) Verify that the map *E* defined in terms of projectors onto coherent states in the example above satisfies the postulates of a POVM.
- (b) What is the operational interpretation of $Pr(X) = tr(E(X)\rho)$ for this POVM, noting that $\alpha = (\langle q \rangle, \langle p \rangle)$ denotes the expectations of the position *q* and momentum *p* operatores in the associated coherent state, and that $\Omega = \mathbb{R}^2$ means we are measuring the position and momentum of some particle?

Solution. (a) To show E(X) defines a valid POVM we need to show

- 1. $E(X) \ge 0$
- 2. $E(\mathbb{R}^2) = 1$
- 3. $E(\bigcup_i X_i) = \sum_i E(X_i)$

1

$$\langle \psi | E(X) | \psi \rangle = \frac{1}{\pi} \int_X \mathrm{d}^2 \alpha \, \langle \psi | \alpha \rangle \, \langle \alpha | \psi \rangle = \frac{1}{\pi} \int_X \mathrm{d}^2 \alpha \underbrace{|\langle \alpha | \psi \rangle|^2}_{\geq 0} \geq 0$$

This applys for all vectors $|\psi\rangle$, so we conclude E(X) is positive semi-definite.

2

This point is satisfied by the resolution of the identity given in the example prior to the question:

$$E(\mathbb{R}^2) = \frac{1}{\pi} \int_{\mathbb{R}^2} \mathrm{d}^2 \alpha \, |\alpha\rangle \langle \alpha| = \mathbb{1}$$

3

Because the X_i are disjoint, the additivity of the Lebesgue integral allow us to split the integral into pieces as follows.

$$E\left(\bigcup_{i} X_{i}\right) = \frac{1}{\pi} \int_{\bigcup_{i} X_{i}} d^{2} \alpha |\alpha\rangle \langle \alpha| = \sum_{i} \frac{1}{\pi} \int_{X_{i}} d^{2} \alpha |\alpha\rangle \langle \alpha| = \sum_{i} E(X_{i})$$

The convergence of the (possibly) infinite sum is guaranteed by first using the above manipulation on the first n sets X_i and then taking the limit.

(b) The operational interpretation of $Pr(X) = tr(E(X)\rho)$ is that this is the probability of finding the particle in and maybe around the state space region *X*.