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Exercise 11.1
Prove the Kraus representation theorem in the case H = Cn.

Solution. Let E : EndH → EndH be our channel and assume it has the following
operator-sum decomposition

E(ρ) = ∑
k

AkρA†
k (1)

with ∑k A†
k Ak = 1. Clearly eq. (1) is linear and it’s trace preserving because

tr(E(ρ)) = ∑
k

tr
(

AkρA†
k

)
= ∑

k
tr
(

A†
k Akρ

)
= tr

([
∑
k

A†
k Ak

]
ρ

)
= tr(ρ).

To see eq. (1) is completely positive consider

(idA ⊗E)(ρAH) = ∑
k
(1A ⊗ Ak)ρAH

(
1A ⊗ A†

k

)
= ∑

k
(1A ⊗ Ak)ρAH(1A ⊗ Ak)

†

Now since (1A ⊗ Ak)ρAH(1A ⊗ Ak)
† ≥ 0 for all k

To go in the other direction again take E to be our CPTP map. Since the space of
endomorphisms of H is isomorphic to the space of n × n matrices EndH ∼= Mn(C)

which is in term isomorphic to Cn2
we can treat E as an n2 × n2 matrix acting on

vec ρ ∈ Cn2
where ρ ∈ Mn(C). From here I’m not totally sure where to go. I would

think we should decompose the matrix representaiton of E using some sort of rank
decomposition, but I have no idea how to start getting terms that looks like AρA†.
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Exercise 11.2
Show that there is a unitary freedom in choosing the set of Kraus operators
associated with any fixed unitary acting on an extended Hilbert space. This is
connected with the freedom one has in assigning a state to the auxiliary system
in the extended Hilbert space.

Solution. When deriving the Kraus operator representation we took the evolution of
system A to be

ρA → ρ′A = trB(E(ρAB)) = trB(ÛρA ⊗ ρBÛ†)

and then we explicitly calculated that value in a chosen basis of HB. That said, there
are many bases we could chose to calculate the trace over, and in particular any one
is related to another by some unitary operatory V. Repeating the calculation in a new
basis {|bi⟩} which is related to the old basis by

|ai⟩ = ∑
j

Vij
∣∣bj
〉

.

We can now calculate new Kraus operators with respect to this basis. In what follows I
use 1 ⊗ |x⟩ in full pedantry because the notation in the book thoroughly confused me.

ρ′A = ∑
i

1 ⊗ ⟨bi|U ρA ⊗
[
∑
j,k,l

λjVjkVjl |bk⟩⟨bl|
]

U† 1 ⊗ |bi⟩

= ∑
i,j

[√
λj ∑

k
Vjk1 ⊗ ⟨bi|U 1 ⊗ |bk⟩

]
ρA

[√
λj ∑

l
Vjl1 ⊗ ⟨bl|U† 1 ⊗ |bi⟩

]
= ∑

i,j
B̂ijρAB̂†

ij

Where I’ve defined B̂ij :=
√

λj ∑k Vjk1 ⊗ ⟨bi|U 1 ⊗ |bk⟩ whereas in the book/notes we
have Âij :=

√
λj1 ⊗ ⟨ai|U 1 ⊗

∣∣aj
〉
. I’ll now show these are related by the unitary V.

Âij =
√

λj1 ⊗ ⟨ai|U 1 ⊗
∣∣aj
〉

=
√

λj ∑
k,l

VikVjl1 ⊗ ⟨bk|U 1 ⊗ |bl⟩

= ∑
k

Vik

[√
λj ∑

l
Vjl1 ⊗ ⟨bk|U 1 ⊗ |bl⟩

]
= ∑

k
VikB̂kj

Thus Âij are related to the the B̂kl via a unitary transformation.
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Exercise 11.4
Generalize the above example of two successive UCNOT operations to show that
the second transformation can not be modelled by a linear map even when the
input state (at time t = 1) has no entanglement between systems A and B.

Solution. We first lay out the circuit we’re working with and the associated states.

|ψ0⟩ |ψ1⟩ |ψ2⟩

Take |ψ0⟩ = (a |0⟩+ b |1⟩)⊗ (c |0⟩+ d |1⟩) and we first apply a CNOT.

|ψ1⟩ = ÛCNOT |ψ0⟩ = ac |00⟩+ ad |01⟩+ bc |10⟩+ bd |11⟩
= a |0⟩ ⊗ (c |0⟩+ d |1⟩) + b |1⟩ ⊗ (c |1⟩+ d |0⟩)

Since Û2
CNOT = 1 we know the final state |ψ2⟩ is |ψ0⟩. Now if we look at the evolution

of system B alone we have

c |0⟩+ d |1⟩

c |1⟩+ d |0⟩ c |0⟩+ d |1⟩

c |0⟩+ d |1⟩ c |0⟩+ d |1⟩

Not only is the first evolution under a CNOT not even a function, but the second CNOT
acts as a swap on one qubit, but the identity on another. If there was a linear map
that performed this N, then by the top equation N(c |0⟩+ d |1⟩) = cN |0⟩+ dN |1⟩ =
c |0⟩+ d |1⟩ and hence N is the identiy operator 1. The second equation, however shows
N(c |1⟩+ d |0⟩) = cN |1⟩+ dN |0⟩ = c |0⟩+ d |1⟩ and hence is the swap. These two
operators are clearly not compatible, so it is not possible.

I’m not sure I’ve really done what was asked of me here, because of how similar the
argument is to in the notes, but the question is somewhat ambiguous.
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Exercise 11.5
Find upper and lower bounds on p from the requirement that the depolarizing
channel is a CPTP map.

Solution. The Kraus representation theorem tells us that a channel is a CPTP map if
and only if it admits an operator sum decomposition which we found in class with the
following Kraus operators.

Â0,0 =
(

1 − p +
p

D2

)1/2
1 Âa,b =

√
p

D
XaZb

To derive bounds on p we need to ensure this is a CPTP map and so it must satisfy the
completeness relation.

1 =
D−1

∑
a,b=0

Â†
a,b Âa,b =

(
1 − p +

p
D2

)
1 +

p
D2

D−1

∑
a,b=1

(
XaZb

)†
XaZb

Even without going any further we know that each term must have a positive coefficient
since A† A ≥ 0 for any operator A. The a, b ̸= 0 term tells us p ≥ 0, and the first is
slightly more complicated.

1 − p +
p

D2 ≥ 0

p
(

1
D2 − 1

)
≥ −1

p ≤ −1
1

D2 − 1

p ≤ D2

D2 − 1
= 1 +

1
D2 − 1

Thus in order for the depolarizing channel to be a CPTP map we must have

0 ≤ p ≤ 1 +
1

D2 − 1
.
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Exercise 12.2
Determine the full freedom in defining sets of measurement operators Mk,j asso-
ciated with a given POVM {Ek}. For example, is the unitary V on HA (defined
above) the most general map on the output state that is consistent with the Born
rule probabilities?

Solution. Suppose we transform the Mk,j via a CPTP map. By Kraus’s representation
theorem this can be done with an operator sum decomposition as

M̃k,j = ∑
i

Ai Mk,j A†
i .

In order to preserve the Born rule we must leave Pr(k) invariant so let’s check that.

Pr(k) = tr(Ekρ)

= ∑
j

tr
(

M̃k,jρM̃†
k,j

)
= ∑

j
tr

([
∑

i
Ai Mk,j A†

i

]
ρ

[
∑

l
Al M†

k,j A
†
l

])
= ∑

i,j,l
tr
(

Ai Mk,j A†
i ρAl Mk,j A†

l

)

This only reduces to ∑j tr
(

Mk,jρM†
k,j

)
in the case where there is only one non-zero

Kraus operator, which must be unitary. Thus we cannot use an arbitrary CPTP map.
I know this doesn’t prove we cannot use other linear/nonlinear maps, but I cannot
figure out how to show we can do those things.
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Exercise 15.1

Assuming that B1 = 1D/
√

D where α ∈
{

1, . . . , D2}, prove that for any trace-
preserving (TP) map E one has t(E) = 1 and m⃗ = 0⃗, and, if E is a unital map,
then t(E) = 1 and m⃗ = n⃗ = 0⃗.

Solution. To calculate t(E) or E1,1 which we can calculate with Eαβ = tr
(

B†
αE(Bβ)

)
.

t(E) = E11 =
1
D

tr(1DE(1D)) =
1
D

tr(E(1D))
(TP)
=

1
D

tr(1D) = 1

Now we want to show m⃗ = E1α = 0⃗ for α > 1.

E1α =
1√
D

tr
(

B†
1E(Pα)

)
=

1
D

tr(E(Pα))
(TP)
=

1
D

tr(Pα) = 0

Using the fact that all the Pauli’s are traceless, and hence so are the tensor products.
Now take E to be unital in addition to trace preserving, and hence we must show

Eα1 = n⃗ = 0⃗. Here we will use the fact that a unital map takes the identity channel to
the identity channel: E(1) = 1.

Eα1 =
1
D

tr
(

P†
αE(1D)

)
=

1
D

tr(Pα1D) =
1
D

tr(Pα) = 0

Thus when E is both trace preserving and unital it’s natural representatation takes the
following block form. [

0 0⃗⊺

0⃗ R(E)

]
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