Quantum Information Processing Assignment 1

Name: Nate Stemen (20906566)
Email: nate.stemen@uwaterloo.ca

Due: Thur, Sep 17, 2020 11:59 PM
Course: QIC 710

Problem 1

Distinguishing between pairs of qubit states.
(a) $|0\rangle$ and $|+\rangle$
(b) $|0\rangle$ and $-\frac{1}{2}|0\rangle+\frac{\sqrt{3}}{2}|1\rangle$
(c) $\frac{1}{\sqrt{2}}|0\rangle+\frac{i}{\sqrt{2}}|1\rangle$ and $\frac{1}{\sqrt{2}}|0\rangle-\frac{i}{\sqrt{2}}|1\rangle$

Solution. (a) To best ditinguish between these two states we will apply R_{θ} with $\theta=\frac{\pi}{8}$. Under this transformation the two states get transformed as follows.

$$
R_{\theta}|0\rangle=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right] \quad R_{\theta}|+\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
\cos \theta-\sin \theta \\
\cos \theta+\sin \theta
\end{array}\right]
$$

Under this transformation, we have the following probability table.

	Probability of measuring state	
	$\|0\rangle$	$\|1\rangle$
$R_{\theta}\|0\rangle$	$\cos ^{2} \theta \approx 0.85$	$\sin ^{2} \theta \approx 0.15$
$R_{\theta}\|+\rangle$	$\frac{1}{2}(\cos \theta-\sin \theta)^{2} \approx 0.15$	$\frac{1}{2}(\cos \theta+\sin \theta)^{2} \approx 0.85$

This leaves us with an overall success probability of 85%.
(b) Here we will make a clockwise rotation of 15° which we will do with R_{θ} with $\theta=-\frac{\pi}{12}$. Under this rotation the states are transformed as follows (using $|\psi\rangle=$ $-\frac{1}{2}|0\rangle+\frac{\sqrt{3}}{2}|1\rangle$ for notational convenience).

$$
R_{\theta}|0\rangle=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right] \quad R_{\theta}|\psi\rangle=\frac{-1}{2}\left[\begin{array}{l}
\cos \theta+\sqrt{3} \sin \theta \\
\sin \theta-\sqrt{3} \cos \theta
\end{array}\right]
$$

With these transformed states we can now evaluate the success probabilities given each state as above.

	$\|0\rangle$	Probability of measuring state
	$\|1\rangle$	
$R_{\theta}\|0\rangle$	$\cos ^{2} \theta \approx 0.93$	$\sin ^{2} \theta \approx 0.07$
$R_{\theta}\|\psi\rangle$	$\left\|\frac{-1}{4}(\cos \theta+\sqrt{3} \sin \theta)^{2}\right\| \approx 0.07$	$\left\|\frac{-1}{4}(\sin \theta-\sqrt{3} \cos \theta)^{2}\right\| \approx 0.93$

So here our overall success probability would be 93%. Pretty solid I do say.
(c) These points are anti-podal on the Bloch sphere, and hence orthogonal, which means they are perfectly distinguishable. To find the unitary transformation U that allows us to measure the state in the computational basis, we need it to satisfy the following two equations.

$$
\begin{aligned}
& U\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{\mathrm{i}}{\sqrt{2}}|1\rangle\right)=|0\rangle \\
& U\left(\frac{1}{\sqrt{2}}|0\rangle-\frac{\mathrm{i}}{\sqrt{2}}|1\rangle\right)=|1\rangle
\end{aligned}
$$

These two equations are equivalent to the following two matrix equations.

$$
\begin{aligned}
\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
1 \\
\mathrm{i}
\end{array}\right] & =\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{c}
1 \\
-\mathrm{i}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

With the matrix written this way we have 4 equations with 4 unknowns. Solving for U gives us

$$
U=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -\mathrm{i} \\
1 & \mathrm{i}
\end{array}\right]
$$

This transformation maps our two states to the computational basis which allows us to measure and distinguish perfectly between the two states and hence have 100% success probability.

Problem 2

Product states versus entangled states.
(a) $\frac{1}{2}|00\rangle+\frac{1}{2}|01\rangle+\frac{1}{2}|10\rangle-\frac{1}{2}|11\rangle$
(b) $\frac{1}{2}|00\rangle+\frac{1}{2}|01\rangle-\frac{1}{2}|10\rangle-\frac{1}{2}|11\rangle$
(c) $\frac{1}{\sqrt{3}}|00\rangle+\frac{1}{\sqrt{3}}|01\rangle+\frac{1}{\sqrt{3}}|10\rangle$

Solution. For this problem we will use the fact that the tensor products of two general single qubit states is $\alpha_{0} \beta_{0}|00\rangle+\alpha_{0} \beta_{1}|01\rangle+\alpha_{1} \beta_{0}|10\rangle+\alpha_{1} \beta_{1}|11\rangle$.
(a) With the above formula we have the following four equations.

$$
\begin{align*}
\alpha_{0} \beta_{0} & =\frac{1}{2} \tag{1}\\
\alpha_{0} \beta_{1} & =\frac{1}{2} \tag{2}\\
\alpha_{1} \beta_{0} & =\frac{1}{2} \tag{3}\\
\alpha_{1} \beta_{1} & =-\frac{1}{2} \tag{4}
\end{align*}
$$

Now if we divide eq. (1) by eq. (2) we get $\beta_{0}=\beta_{1}$ which we will call β. Dividing eq. (3) by eq. (4) yields $\frac{\alpha_{1} \beta}{\alpha_{1} \beta}=\frac{1 / 2}{-1 / 2} \Longrightarrow 1=-1$. With this we can conclude this state is not a possible product state and hence an entangled state.
(b) The following tensor prodduct gives rise to the desired state which tells us the state is a product state, not an entangled state.

$$
\left(\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle\right) \otimes\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right)=\frac{1}{2}|00\rangle+\frac{1}{2}|01\rangle-\frac{1}{2}|10\rangle-\frac{1}{2}|11\rangle
$$

(c) Given the $|11\rangle$ term is nonexistent, we know $\alpha_{1} \beta_{1}=0$. This implies $\alpha_{1}=0$ or $\beta_{1}=0$. If this was the case then either the $\alpha_{1} \beta_{0}|10\rangle$ term would be 0 or the $\alpha_{0} \beta_{1}|01\rangle$ term would be zero. This is not the case so we conclude this is an entangled state.

