Quantum Information Processing Assignment 3

Name: Nate Stemen (20906566)
Due: Thur, Oct 1, 2020 11:59 PM
Email: nate.stemen@uwaterloo.ca
I worked with Chelsea Komlo and Wilson Wu on this assignment.

Problem 1

Measuring the control qubit of a CNOT gate.

Solution. Lets start with the most general 2 qubit state.

$$
\begin{equation*}
\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle \tag{1}
\end{equation*}
$$

Starting with the gate on the left, we first have to make a partial measurement of the first qubit. This collapses the state into one of two possibilities.

$$
\left.\begin{array}{rc}
\text { First qubit state } & |0\rangle \\
\text { State after measurement } & \frac{1}{n}|0\rangle \otimes \underbrace{\left(\alpha_{00}|0\rangle+\alpha_{01}|1\rangle\right)}_{\phi_{0}}
\end{array}\left|\frac{1}{n^{\prime}}\right| 1\right\rangle \otimes \underbrace{\left(\alpha_{10}|0\rangle+\alpha_{11}|1\rangle\right)}_{\phi_{1}}
$$

Where $n=\left|a_{00}\right|^{2}+\left|\alpha_{01}\right|^{2}$ and similarly with n^{\prime} as factors for normalization. We can now feed these two states into a controlled U gate to see what comes out.

Measured $\|0\rangle$	Measured $\|1\rangle$
$\frac{1}{n}\left[\begin{array}{cc}1 & 0 \\ 0 & U\end{array}\right]\left[\begin{array}{c}\phi_{0} \\ 0\end{array}\right]=\frac{1}{n}\left[\begin{array}{c}\phi_{0} \\ 0\end{array}\right]$	$\frac{1}{n^{\prime}}\left[\begin{array}{cc}\mathbb{1} & 0 \\ 0 & U\end{array}\right]\left[\begin{array}{c}0 \\ \phi_{1}\end{array}\right]=\frac{1}{n^{\prime}}\left[\begin{array}{c}0 \\ U \phi_{1}\end{array}\right]$

Now we can switch our attention to the circuit on the right hand side. First we have to apply a controlled U to our general state defined in eq. (1).

$$
\left[\begin{array}{ll}
\mathbb{1} & 0 \\
0 & U
\end{array}\right]\left[\begin{array}{c}
\alpha_{00} \\
\alpha_{01} \\
a_{10} \\
\alpha_{11}
\end{array}\right]=\left[\begin{array}{c}
\alpha_{00} \\
\alpha_{01} \\
u_{11} \alpha_{10}+u_{12} \alpha_{11} \\
u_{21} \alpha_{10}+u_{22} \alpha_{11}
\end{array}\right]
$$

Now with this state we must make a partial measurement of the first qubit. As before we will only measure $|0\rangle$ or $|1\rangle$ so we have two branches.

$$
\frac{\text { Measure }|0\rangle}{\left[\begin{array}{c}
\alpha_{00} \\
\alpha_{01} \\
u_{11} \alpha_{10}+\alpha_{12} \alpha_{11} \\
u_{21} \alpha_{10}+u_{22} \alpha_{11}
\end{array}\right] \rightarrow \frac{1}{n}\left[\begin{array}{c}
\alpha_{00} \\
\alpha_{01} \\
0 \\
0
\end{array}\right]}\left[\begin{array}{c}
\alpha_{00} \\
\alpha_{01} \\
u_{12}+\alpha_{12} \alpha_{11} \\
u_{21} \alpha_{10}+u_{22} \alpha_{11}
\end{array}\right] \rightarrow \frac{1}{n^{\prime}}\left[\begin{array}{c}
0 \\
0 \\
u_{12} \alpha_{10}+u_{12} \alpha_{11} \\
u_{21} \alpha_{10}+u_{22} \alpha_{11}
\end{array}\right]
$$

We now have the four states we need to conclude whether or not these circuits are the same. Measuring 0 in the first circuit led us to a state we called $\frac{1}{n}\left[\begin{array}{c}\phi_{0} \\ 0\end{array}\right]$ which is shorthand for $\frac{1}{n}\left[\begin{array}{c}\alpha_{00} \\ \alpha_{01} \\ 0 \\ 0\end{array}\right]$. This is exactly what we got when first applying the controlled U and then making the measurement so that works out.

The case for measuring 1 then applying the controlled U gate got us $\frac{1}{n^{\prime}}\left[\begin{array}{c}0 \\ U \phi_{1}\end{array}\right]$ which again was shorthand for $\frac{1}{n^{\prime}}\left[\begin{array}{c}0 \\ u_{11} \alpha_{10}+u_{12} \alpha_{11} \\ u_{21} \alpha_{10}+u_{22} \alpha_{11}\end{array}\right]$. This is what we got for the first circuit. At
first I thought there might be a different normalization constant that needed to be added instead of just n^{\prime}, but because unitary operators are isometries (distance preserving maps), the length of the vector remains unchanged and hence still normalized.

Problem 2

Unitary between two triples of states with same inner products.

Solution. First assume the sets $\left\{\phi_{i}\right\}$ and $\left\{\psi_{i}\right\}$ are both linearly independent sets of vectors when considered on their own. Let us apply Gram-Schmidt orthonormalization to $\left\{\phi_{i}\right\}$ to obtain $\left\{\tilde{\phi}_{i}\right\}$ and similarly with $\left\{\psi_{i}\right\}$ to obtain $\left\{\tilde{\psi}_{i}\right\}$. We note that we now have two orthonormal bases for \mathbb{C}^{3}, and we know basis transformations are unitary maps. This means we can find a U such that $U\left|\tilde{\phi}_{i}\right\rangle=\left|\tilde{\psi}_{i}\right\rangle$.

Now we need to show $U\left|\phi_{i}\right\rangle=\left|\psi_{i}\right\rangle$. To do this lets look at how the $\left\{\tilde{\phi}_{i}\right\}$ were created.

$$
\begin{array}{ll}
\left|\tilde{\phi}_{0}\right\rangle=\left|\phi_{0}\right\rangle & \left|\tilde{\psi}_{0}\right\rangle=\left|\psi_{0}\right\rangle \\
\left|\tilde{\phi}_{1}\right\rangle=\left|\phi_{1}\right\rangle-\frac{\left\langle\phi_{1} \mid \phi_{0}\right\rangle}{\left\langle\phi_{0} \mid \phi_{0}\right\rangle}\left|\phi_{0}\right\rangle & \left|\tilde{\psi}_{1}\right\rangle=\left|\psi_{1}\right\rangle-\frac{\left\langle\psi_{1} \mid \psi_{0}\right\rangle}{\left\langle\psi_{0} \mid \psi_{0}\right\rangle}\left|\psi_{0}\right\rangle \\
\left|\tilde{\phi}_{2}\right\rangle=\left|\phi_{2}\right\rangle-\frac{\left\langle\phi_{2} \mid \tilde{\phi}_{0}\right\rangle}{\left\langle\tilde{\phi}_{0} \mid \tilde{\phi}_{0}\right\rangle}\left|\tilde{\phi}_{0}\right\rangle-\frac{\left\langle\phi_{2} \mid \tilde{\phi}_{1}\right\rangle}{\left\langle\tilde{\phi}_{1} \mid \tilde{\phi}_{1}\right\rangle}\left|\tilde{\phi}_{1}\right\rangle & \left|\tilde{\psi}_{2}\right\rangle=\left|\psi_{2}\right\rangle-\frac{\left\langle\psi_{2} \mid \tilde{\psi}_{0}\right\rangle}{\left\langle\tilde{\psi}_{0} \mid \tilde{\psi}_{0}\right\rangle}\left|\tilde{\psi}_{0}\right\rangle-\frac{\left\langle\psi_{2} \mid \tilde{\psi}_{1}\right\rangle}{\left\langle\tilde{\psi}_{1} \mid \tilde{\psi}_{1}\right\rangle}\left|\tilde{\psi}_{1}\right\rangle
\end{array}
$$

It clear that $U\left|\tilde{\phi}_{0}\right\rangle=\left|\tilde{\psi}_{0}\right\rangle$ implies $U\left|\phi_{0}\right\rangle=\left|\psi_{0}\right\rangle$. Now let's apply U to $\left|\tilde{\phi}_{1}\right\rangle$.

$$
U\left|\tilde{\phi}_{1}\right\rangle=U\left|\phi_{1}\right\rangle-\left\langle\phi_{1} \mid \phi_{0}\right\rangle U\left|\phi_{0}\right\rangle
$$

$$
\left.=U\left|\phi_{1}\right\rangle-\left\langle\psi_{1} \mid \psi_{0}\right\rangle\left|\psi_{0}\right\rangle \quad \text { (bc inner prods equal, and } U\left|\phi_{0}\right\rangle=\left|\psi_{0}\right\rangle .\right)
$$

$$
=\left|\psi_{1}\right\rangle-\left\langle\psi_{1} \mid \psi_{0}\right\rangle\left|\psi_{0}\right\rangle \quad\left(\text { RHS of } U\left|\tilde{\phi}_{1}\right\rangle=\left|\tilde{\psi}_{1}\right\rangle .\right)
$$

Where the last two lines show us $U\left|\phi_{1}\right\rangle=U\left|\psi_{1}\right\rangle$ as desired. A similar computation can be done with the third vector.

$$
\begin{aligned}
U\left|\tilde{\phi}_{2}\right\rangle & =U\left|\phi_{2}\right\rangle-\frac{\left\langle\phi_{2} \mid \tilde{\phi}_{0}\right\rangle}{\left\langle\tilde{\phi}_{0} \mid \tilde{\phi}_{0}\right\rangle} U\left|\tilde{\phi}_{0}\right\rangle-\frac{\left\langle\phi_{2} \mid \tilde{\phi}_{1}\right\rangle}{\left\langle\tilde{\phi}_{1} \mid \tilde{\phi}_{1}\right\rangle} U\left|\tilde{\phi}_{1}\right\rangle \\
& =U\left|\phi_{2}\right\rangle-\frac{\left\langle\phi_{2} \mid \tilde{\phi}_{0}\right\rangle}{\left\langle\tilde{\phi}_{0} \mid \tilde{\phi}_{0}\right\rangle}\left|\tilde{\psi}_{0}\right\rangle-\frac{\left\langle\phi_{2} \mid \tilde{\phi}_{1}\right\rangle}{\left\langle\tilde{\phi}_{1} \mid \tilde{\phi}_{1}\right\rangle}\left|\tilde{\psi}_{1}\right\rangle \\
& =\left|\psi_{2}\right\rangle-\frac{\left\langle\psi_{2} \mid \tilde{\psi}_{0}\right\rangle}{\left\langle\tilde{\psi}_{0} \mid \tilde{\psi}_{0}\right\rangle}\left|\tilde{\psi}_{0}\right\rangle-\frac{\left\langle\psi_{2} \mid \tilde{\psi}_{1}\right\rangle}{\left\langle\tilde{\psi}_{1} \mid \tilde{\psi}_{1}\right\rangle}\left|\tilde{\psi}_{1}\right\rangle
\end{aligned}
$$

So as long as we can show the coefficients for the $\left|\tilde{\psi}_{i}\right\rangle$ terms are the same, we can conclude $U\left|\phi_{2}\right\rangle=\left|\psi_{2}\right\rangle$. The $\left|\tilde{\psi}_{0}\right\rangle$ is obviously the same because one can drop the tildes and use the fact that the vectors are normalized, and the inner products are pairwise equal. For the $\left|\tilde{\psi}_{1}\right\rangle$ term we need to compute some stuff.

$$
\left\langle\phi_{2} \mid \tilde{\phi}_{1}\right\rangle=\bar{\alpha}-\bar{\alpha}^{2}
$$

Here we've used $\alpha=\left\langle\phi_{0} \mid \phi_{1}\right\rangle$ and the fact that the inner product is conjugated when flipped. It's important to note here that this calculation is exactly the same for $\left\langle\psi_{2} \mid \tilde{\psi}_{1}\right\rangle$ because the inner products are equal (i.e. the indices match). The same logic and computation mean $\left\langle\tilde{\phi}_{1} \mid \tilde{\phi}_{1}\right\rangle=\left\langle\tilde{\psi}_{1} \mid \tilde{\psi}_{1}\right\rangle$. With this we conclude the problem solved for linearly independent sets of vectors.

Now if we assume the sets $\left\{\phi_{i}\right\},\left\{\psi_{i}\right\}$ are linearly dependent, then we only have to show the first two vectors land in the right spots, because if $\left|\phi_{2}\right\rangle=\alpha\left|\phi_{0}\right\rangle+\beta\left|\phi_{1}\right\rangle$, then $U\left|\phi_{2}\right\rangle=\alpha\left|\psi_{0}\right\rangle+\beta\left|\psi_{1}\right\rangle=\left|\psi_{2}\right\rangle$ which is the only possibly option for $\left|\psi_{2}\right\rangle$ in order to preserve the inner products. The problem is trivial for all three vectors linearly dependent because a simple rotation will take a line to a line.

