Quantum Information Processing Assignment 5

Name: Nate Stemen (20906566)
Due: Thur, Oct 22, 2020 11:59 PM
Email: nate.stemen@uwaterloo.ca
I worked with Chelsea Komlo and Wilson Wu on this assignment.

Problem 1

Consider the case where $m=35, r=7$, and $s=5$.
(a) Give an example of a function $f: \mathbb{Z}_{35} \rightarrow \mathbb{Z}_{35}$ that is strictly 7-periodic. You may give the truth table or you may give a list of 35 numbers, that we'll interpret as $f(0), f(1), f(2), \ldots, f(34)$. Although any strictly 7 -periodic function will get full marks here, please try to make your function look as irregular as you can subject to the condition of being strictly 7-periodic.
(b) What are the colliding sets of your function in part (a)? List these sets. Also, show that they satisfy the Simon mod 35 property, namely, that they are of the form $\{a, a+7, a+2 \cdot 7, \ldots, a+(s-1) \cdot 7\}$ for some $a \in \mathbb{Z}_{35}$.
(c) List all $b \in \mathbb{Z}_{35}$ such that $b \cdot 7=0($ in $\bmod 35$ arithmetic).

Solution. (a) We will first give the values of f as our strictly 7-periodic function.

x	0	1	2	3	4	5	6
$f(x)$	4	43	0	7	20	572	2
x	7	8	9	10	11	12	13
$f(x)$	4	43	0	7	20	572	2
x	14	15	16	17	18	19	20
$f(x)$	4	43	0	7	20	572	2
x	21	22	23	24	25	26	27
$f(x)$	4	43	0	7	20	572	2
x	28	29	30	31	32	33	34
$f(x)$	4	43	0	7	20	572	2

(b) The way we've aligned the table shows clearly the colliding sets are as follows.

Colliding set	Collision value
$0,7,14,21,28$	4
$1,8,15,22,29$	43
$2,9,16,23,30$	0
$3,10,17,24,31$	7
$4,11,18,25,32$	20
$5,12,19,26,33$	572
$6,13,20,27,34$	2

(c) Any $b \in\{0,5,10,15,20,25,30\}$ will satisfy $b \cdot 7=0$.

Problem 2

Simon $\bmod m$ algorithm in the $d=1$ case.

Solution. As we did in lecture we will break this down into finding out how the state transforms at each step of the way.

With that, let's apply the first Fourier transform to $|0\rangle$.

$$
\left|\psi_{1}\right\rangle=F_{m}|0\rangle|0\rangle=\frac{1}{\sqrt{m}} \sum_{b \in \mathbb{Z}_{m}} \omega^{0 \cdot b}|b\rangle|0\rangle=\frac{1}{\sqrt{m}} \sum_{b \in \mathbb{Z}_{m}}|b\rangle|0\rangle
$$

And now let's apply the second gate. It's not a controlled- f, but that's what I want to call it. What do we call this thing?

$$
\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{m}} \sum_{b \in \mathbb{Z}_{m}}|b\rangle|0+f(b)\rangle=\frac{1}{\sqrt{m}} \sum_{b \in \mathbb{Z}_{m}}|b\rangle|f(b)\rangle
$$

That's not too bad. Now we're going to measure the second qubit. When we do this we are going to get a random $f(b)$ for $b \in \mathbb{Z}_{m}$. Say we get $f(\tilde{b})$. By the r-periodicity of f we know that all of $f(\tilde{b}+k r)=f(\tilde{b})$ for $k \in \mathbb{Z}$, so the first qubit ${ }^{1}$ collapses into a superposition of those $\tilde{b}+k r$ states.

$$
\left|\psi_{3}\right\rangle=\frac{1}{\sqrt{m}} \sum_{k \in \mathbb{Z}_{m}}|\tilde{b}+k r\rangle
$$

Lastly we have to apply the inverse Fourier transform.

$$
\begin{aligned}
\left|\psi_{4}\right\rangle & =F_{m}^{*} \frac{1}{\sqrt{m}} \sum_{k \in \mathbb{Z}_{m}}|\tilde{b}+k r\rangle \\
& =\frac{1}{m} \sum_{b \in \mathbb{Z}_{m}} \sum_{k \in \mathbb{Z}_{m}} \omega^{-(\tilde{b}+k r) b}|b\rangle \\
& =\frac{1}{m} \sum_{b \in \mathbb{Z}_{m}} \sum_{k \in \mathbb{Z}_{m}} \omega^{-b \tilde{b}} \omega^{-k r b}|b\rangle \\
& =\frac{1}{m} \sum_{b \in \mathbb{Z}_{m}} \omega^{-b \tilde{b}}\left[\sum_{k \in \mathbb{Z}_{m}} \omega^{-k r b}\right]|b\rangle
\end{aligned}
$$

From here we can see if $r b \neq 0$ then using the fact that $\sum_{b \in \mathbb{Z}_{m}} \omega^{b}=0^{2}$ that these terms will drop out of the expression and hence we will always measure a state with $r b=0$. This leaves the state as $\sum_{b} \omega^{-b \tilde{b}}|b\rangle$ and because norm of every coefficient is the same, the probability of getting $r b=0$ is equally distributed over the states.

[^0]
Problem 3

Deducing r from b.

Solution. First let's make the following observations. $35=m=5 \cdot 7=r s$. So m is the product of two primes. Now assume we are given a b with $b r=0$. This implies that $b r$ is a multiple of m, and because $m=r s$ we can write $b r=k r s$ which implies $b=k s$ for some $k \in \mathbb{Z}$. If we take the greatest common divisor of b and m to $\operatorname{gcd}(b, m)=a$ then we will have two cases.

1. a is prime because $b=k s$ and $m=r s$
2. a is 0 which implies b was 0

When a is prime it is s which we can then use to divide m to get r.

Problem 4

Suppose that $f: \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{3}$ is of the form $f(x)=a x^{2}+b x+c \ldots$

Solution. (a) Let's first look at the three values f can take.

$$
\begin{aligned}
& f(0)=c \\
& f(1)=a+b+c \\
& f(2)=4 a+2 b+c=a+2 b+c
\end{aligned}
$$

We can then solve for a as

$$
a=-f(0)+2 f(1)-f(2)
$$

which clearly shows we need to make three queries to f.

[^0]: ${ }^{1}$ Well actually an m-dimensional qudit, right?
 ${ }^{2}$ Multiply both sides by $\frac{1}{\omega^{k l} \omega^{m-1}}$ to get the needed equation.

