Quantum Information Processing Assignment 5

Name: Nate Stemen (20906566) Email: nate.stemen@uwaterloo.ca Due: Thur, Oct 22, 2020 11:59 PM Course: QIC 710

I worked with Chelsea Komlo and Wilson Wu on this assignment.

8
Problem 1
Consider the case where $m = 35$, $r = 7$, and $s = 5$.
(a) Give an example of a function $f : \mathbb{Z}_{35} \to \mathbb{Z}_{35}$ that is strictly 7-periodic. You
may give the truth table or you may give a list of 35 numbers, that we'll
interpret as $f(0), f(1), f(2), \dots, f(34)$. Although any strictly 7-periodic
function will get full marks here, please try to make your function look as
irregular as you can subject to the condition of being strictly 7-periodic.
(b) What are the <i>colliding sets</i> of your function in part (a)? List these sets. Also,
show that they satisfy the Simon mod 35 property, namely, that they are of
the form $\{a, a + 7, a + 2 \cdot 7,, a + (s - 1) \cdot 7\}$ for some $a \in \mathbb{Z}_{35}$.
(c) List all $b \in \mathbb{Z}_{35}$ such that $b \cdot 7 = 0$ (in mod 35 arithmetic).

Solution. (a) We will first give the values of f as our strictly 7-periodic function.

x	0	1	2	3	4	5	6
f(x)	4	43	0	7	20	572	2
x f(x)	7	8	9	10	11	12	13
	4	43	0	7	20	572	2
x f(x)	14	15	16	17	18	19	20
	4	43	0	7	20	572	2
$\begin{array}{c} x\\ f(x) \end{array}$	21	22	23	24	25	26	27
	4	43	0	7	20	572	2
$\begin{array}{c} x \\ f(x) \end{array}$	28	29	30	31	32	33	34
	4	43	0	7	20	572	2

(b) The way we've aligned the table shows clearly the colliding sets are as follows.

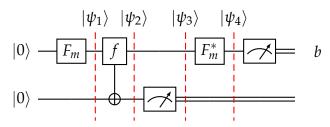
Colliding set	Collision value
0,7,14,21,28	4
1,8,15,22,29	43
2,9,16,23,30	0
3, 10, 17, 24, 31	7
4, 11, 18, 25, 32	20
5,12,19,26,33	572
6,13,20,27,34	2

(c) Any $b \in \{0, 5, 10, 15, 20, 25, 30\}$ will satisfy $b \cdot 7 = 0$.

Prol	blem	2
------	------	---

Toblem 2	ħ.
Simon mod <i>m</i> algorithm in the $d = 1$ case.	l
L,	J.,

Solution. As we did in lecture we will break this down into finding out how the state transforms at each step of the way.



With that, let's apply the first Fourier transform to $|0\rangle$.

$$\ket{\psi_1} = F_m \ket{0} \ket{0} = rac{1}{\sqrt{m}} \sum_{b \in \mathbb{Z}_m} \omega^{0 \cdot b} \ket{b} \ket{0} = rac{1}{\sqrt{m}} \sum_{b \in \mathbb{Z}_m} \ket{b} \ket{0}$$

And now let's apply the second gate. It's not a controlled-*f*, but that's what I want to call it. What do we call this thing?

$$|\psi_2\rangle = \frac{1}{\sqrt{m}} \sum_{b \in \mathbb{Z}_m} |b\rangle |0 + f(b)\rangle = \frac{1}{\sqrt{m}} \sum_{b \in \mathbb{Z}_m} |b\rangle |f(b)\rangle$$

That's not too bad. Now we're going to measure the second qubit. When we do this we are going to get a random f(b) for $b \in \mathbb{Z}_m$. Say we get $f(\tilde{b})$. By the *r*-periodicity of f we know that all of $f(\hat{b} + kr) = f(\hat{b})$ for $k \in \mathbb{Z}$, so the first qubit¹ collapses into a superposition of those $\tilde{b} + kr$ states.

$$|\psi_3
angle = rac{1}{\sqrt{m}}\sum_{k\in\mathbb{Z}_m} \left|\tilde{b}+kr
ight
angle$$

Lastly we have to apply the inverse Fourier transform.

$$\begin{split} \psi_{4} \rangle &= F_{m}^{*} \frac{1}{\sqrt{m}} \sum_{k \in \mathbb{Z}_{m}} \left| \tilde{b} + kr \right\rangle \\ &= \frac{1}{m} \sum_{b \in \mathbb{Z}_{m}} \sum_{k \in \mathbb{Z}_{m}} \omega^{-(\tilde{b} + kr)b} \left| b \right\rangle \\ &= \frac{1}{m} \sum_{b \in \mathbb{Z}_{m}} \sum_{k \in \mathbb{Z}_{m}} \omega^{-b\tilde{b}} \omega^{-krb} \left| b \right\rangle \\ &= \frac{1}{m} \sum_{b \in \mathbb{Z}_{m}} \omega^{-b\tilde{b}} \left[\sum_{k \in \mathbb{Z}_{m}} \omega^{-krb} \right] \left| b \right\rangle \end{split}$$

From here we can see if $rb \neq 0$ then using the fact that $\sum_{b \in \mathbb{Z}_m} \omega^b = 0^2$ that these terms will drop out of the expression and hence we will always measure a state with rb = 0. This leaves the state as $\sum_{b} \omega^{-b\tilde{b}} \ket{b}$ and because norm of every coefficient is the same, the probability of getting rb = 0 is equally distributed over the states.

 $^{^{1}}$ Well actually an *m*-dimensional qudit, right? 2 Multiply both sides by $\frac{1}{\omega^{kr}\omega^{m-1}}$ to get the needed equation.

Problem 3		
Deducin	ng r from b .	

Solution. First let's make the following observations. $35 = m = 5 \cdot 7 = rs$. So *m* is the product of two primes. Now assume we are given a *b* with br = 0. This implies that br is a multiple of *m*, and because m = rs we can write br = krs which implies b = ks for some $k \in \mathbb{Z}$. If we take the greatest common divisor of *b* and *m* to gcd(b, m) = a then we will have two cases.

- 1. *a* is prime because b = ks and m = rs
- 2. *a* is 0 which implies *b* was 0

When *a* is prime it is *s* which we can then use to divide *m* to get *r*.

Problem 4
Suppose that $f : \mathbb{Z}_3 \to \mathbb{Z}_3$ is of the form $f(x) = ax^2 + bx + c$

Solution. (a) Let's first look at the three values *f* can take.

$$f(0) = c$$

$$f(1) = a + b + c$$

$$f(2) = 4a + 2b + c = a + 2b + c$$

We can then solve for *a* as

$$a = -f(0) + 2f(1) - f(2)$$

which clearly shows we need to make three queries to f.