Quantum Information Processing Assignment 6

Name: Nate Stemen (20906566)
Due: Fri, Oct 30, 2020 11:59 PM
Email: nate.stemen@uwaterloo.ca
I worked with Chelsea Komlo and Wilson Wu on this assignment.

Problem 1

Quantum Fourier transform.

(a) Prove that F_{m} is unitary.
(b) What computational basis state is $F_{m}^{2}|a\rangle$?

Solution. (a) To show that F_{m} is unitary, we will show $\left(F_{m}\right)_{i}\left(F_{m}\right)_{j}^{\dagger}=\delta_{i j}$ where $\left(F_{m}\right)_{i}$ is the i-th row of F_{m} and $\left(F_{m}\right)_{j}^{\dagger}$ is the j-th column of F_{m}^{\dagger}.

$$
\begin{aligned}
\left(F_{m}\right)_{i}\left(F_{m}\right)_{j}^{\dagger} & =\frac{1}{m}\left[\begin{array}{lllll}
1 & \omega^{i} & \omega^{2 i} & \cdots & \omega^{(m-1) i}
\end{array}\right]\left[\begin{array}{c}
1 \\
\bar{\omega}^{i} \\
\bar{\omega}^{2 i} \\
\vdots \\
\bar{\omega}^{(m-1) i}
\end{array}\right] \\
& =\frac{1}{m} \sum_{n=0}^{m-1} \omega^{n i} \bar{\omega}^{n j} \\
& =\frac{1}{m} \sum_{n=0}^{m-1} \omega^{n i} \omega^{-n j} \\
& =\frac{1}{m} \sum_{n=0}^{m-1} \omega^{n(i-j)}
\end{aligned}
$$

If $i=j$, then we have $\frac{1}{m} \sum_{n=0}^{m-1} 1=1$. Now if $i \neq j$, say $i-j=a \in \mathbb{Z}$, then we have $\frac{1}{m} \sum_{n=0}^{m-1} \omega^{a n}=0$ by the sum of powers of roots of unity identities presented in lecture ${ }^{1}$. We thus conclude this product is $\delta_{i j}$ and hence equivalently we write $F_{m} F_{m}^{\dagger}=\mathbb{1}$.
(b) We'll first have to expand F_{m}^{2}, and we'll do it component-wise again.

$$
\left(F_{m}^{2}\right)_{i k}=\sum_{j=1}^{m}\left(F_{m}\right)_{i j}\left(F_{m}\right)_{j k}=\sum_{j=1}^{m} \frac{1}{m} \omega^{(i-1)(j-1)} \omega^{(j-1)(k-1)}=\frac{1}{m} \sum_{j=0}^{m-1} \omega^{j(i+k-2)}
$$

If $i+k-2 \equiv 0 \bmod m$, then $\left(F_{m}^{2}\right)_{i k}=1$, and as above, if it's not 0 , then $\left(F_{m}^{2}\right)_{i k}=0$. This matrix isn't the identity, but it is full rank with only 1's and 0's as components. For a 4×4 we have the following.

$$
F_{4}^{2}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

[^0]In general we have a 1 in the first position, and an $(m-1) \times(m-1)$ anti-diagonal matrix with 1 s on the anti-diagonal with 0 's everywhere else. This indeed maps computational basis states to computational basis states.

Problem 2

Superposition of eigenvectors in phase estimation algorithm.

Solution. Let $A=\left(F_{2^{\ell}}^{*} \otimes \mathbb{1}\right) W\left(H^{\otimes n} \otimes \mathbb{1}\right)$. Surely this in a linear operator. Thus we have the following.

$$
\begin{aligned}
A\left|0^{\ell}\right\rangle \otimes\left(\alpha_{1}\left|\psi_{1}\right\rangle+\alpha_{2}\left|\psi_{2}\right\rangle\right) & =\alpha_{1} A\left|0^{\ell}\right\rangle \otimes\left|\psi_{1}\right\rangle+\alpha_{2} A\left|0^{\ell}\right\rangle \otimes\left|\psi_{2}\right\rangle \\
& =\alpha_{1}|a\rangle \otimes\left|\psi_{1}\right\rangle+\alpha_{2}|b\rangle \otimes\left|\psi_{2}\right\rangle
\end{aligned}
$$

Written this way we can see when we measure the first ℓ qubits we will get a with probability $\left|\alpha_{1}\right|^{2}$ and b with probability $\left|\alpha_{2}\right|^{2}$.

[^0]: ${ }^{1}$ In lecture this was only presented for $a>1$, but holds as well for negative a because ω^{-1} is also a primitive root of unity.

