
Quantum Information Processing Assignment 7

Name: Nate Stemen (20906566) Due: Thurs, Nov 5, 2020 11:59 PM
Email: nate.stemen@uwaterloo.ca Course: QIC 710

I worked with Chelsea Komlo and Wilson Wu on this assignment.

Problem 1
Efficiently computing bijections.

Solution. The following circuit computes U f .

|a⟩
Q f Q f−1

| f (a)⟩

|0⟩
∣∣ f−1( f (a))⊕ a

〉
|ψ0⟩ |ψ1⟩

Where we have the following intermediary states that follow directly from the definition
of Q f and SWAP.

|ψ0⟩ = |a⟩ | f (a)⟩ |ψ1⟩ = | f (a)⟩ |a⟩

Here the swap isn’t really just one gate. In order to swap two qubits, it takes 3 CNOT
gates, and we need to swap n qubits in the top register with n qubits in the bottom
register. This is O(n) gates combined with one use of Q f and one use of Q f−1 .

Lastly it’s important to note that the bottom register is returned to |0⟩ because
f−1( f (a)) is a and a ⊕ a is 0.
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Problem 2
Basic questions about density matrices.

(a) Show that, for any operator that is Hermitian, positive definite (i.e.,has no
negative eigenvalues), and has trace 1, there is a probabilistic mixture of
pure states whose density matrix is ρ.

(b) A density matrix ρ corresponds to a pure state if and only if ρ = |ψ⟩⟨ψ|.
Show that any density matrix ρ corresponds to a pure state if and only if
tr
(
ρ2) = 1.

(c) Show that every 2 × 2 density matrix ρ can be expressed as an equally
weighted mixture of pure states.

Solution. (a) By the spectral theorem for Hermitian operators, we can write our Her-
mitian, positive definite operator as

A = ∑
i

λi |i⟩⟨i| .

This can be seen to be a density operator because each λi is an eigenvalue of A, and by
the Hermiticity of A it is real and non-negative.

(b) Let ρ = |ψ⟩⟨ψ|. Then ρ2 = (|ψ⟩⟨ψ|)2 = |ψ⟩ ⟨ψ|ψ⟩ ⟨ψ| = |ψ⟩⟨ψ| = ρ. Thus
tr
(
ρ2) = tr(ρ) = 1.
Now take tr

(
ρ2) = 1. Let’s first calculate ρ2.

ρ2 =

(
n

∑
i=1

pi |i⟩⟨i|
)2

=
n

∑
i=1

pi |i⟩⟨i|
n

∑
j=1

pj |j⟩⟨j|

=
n

∑
i,j=1

pi pj |i⟩ ⟨i|j⟩ ⟨j| (using a basis where ⟨i|j⟩ = δij)

=
n

∑
i=1

p2
i |i⟩⟨i|

Now taking the trace of ρ2 we get a condition on the pi’s.

tr ρ2 =
n

∑
k=1

⟨k| ρ2 |k⟩

=
n

∑
k,i=1

⟨k|
(

p2
i |i⟩⟨i|

)
|k⟩

=
n

∑
i=1

p2
i = 1

So we now know ∑ pi = 1 = ∑ p2
i . By basic properties of real numbers, we know

p2
i ≤ pi when pi ∈ [0, 1] and equality only holding when pi ∈ {0, 1}. Using this fact we

can write
n

∑
i=1

p2
i ≤

n

∑
i=1

pi
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where again equality only holds if pi ∈ {0, 1} for all i. The only way this can be true is
if one of the pi’s is 1 and all of the rest are 0. In that case our summation collapses to
one term, and we are left with ρ = |ψi⟩⟨ψi| as desired.

(c) Let ρ be an arbitrary 2 × 2 density matrix:

ρ = p0 |ψ0⟩⟨ψ0|+ p1 |ψ1⟩⟨ψ1| .

Define the following two vectors:

|ψ̃0⟩ =
√

p0

2
|ψ0⟩+

√
p1

2
|ψ1⟩ |ψ̃1⟩ =

√
p0

2
|ψ0⟩ −

√
p1

2
|ψ1⟩ .

We’ll now show that ρ = 1
2 |ψ̃0⟩⟨ψ̃0| + 1

2 |ψ̃1⟩⟨ψ̃1|. For the page width’s sake, let’s
calculate each term separately.

|ψ̃0⟩⟨ψ̃0| = (
√

p0 |ψ0⟩+
√

p1 |ψ1⟩)(
√

p0 ⟨ψ0|+
√

p1 ⟨ψ1|)
= p0 |ψ0⟩⟨ψ0|+

√
p0p1 |ψ0⟩⟨ψ1|+

√
p0p1 |ψ1⟩⟨ψ0|+ p1 |ψ1⟩⟨ψ1|

|ψ̃1⟩⟨ψ̃1| = (
√

p0 |ψ0⟩ −
√

p1 |ψ1⟩)(
√

p0 ⟨ψ0| −
√

p1 ⟨ψ1|)
= p0 |ψ0⟩⟨ψ0| −

√
p0p1 |ψ0⟩⟨ψ1| −

√
p0p1 |ψ1⟩⟨ψ0|+ p1 |ψ1⟩⟨ψ1|

Thus putting those together we have

1
2
|ψ̃0⟩⟨ψ̃0|+

1
2
|ψ̃1⟩⟨ψ̃1| = p0 |ψ0⟩⟨ψ0|+ p1 |ψ1⟩⟨ψ1|

Thus we conclude it’s possible to write an arbitrary density matrix as an equally
weighted mixture of pure states.

3



Quantum Information Processing Assignment 7 Nate Stemen

Problem 3
The density matrix depends on what you know.

(a) What is the density matrix of the state from Bob’s perspective?
(b) What’s Alice’s density matrix for Bob’s state assuming that her initial state

was |0⟩? What’s Alice’s density matrix for Bob’s state assuming that her
initial state was |+⟩?

(c) What is the density matrix of the state from Bob’s perspective? Is it the same
matrix as in part (a)?

(d) What’s Alice’s density matrix for Bob’s state assuming that her initial state
was |ψ0⟩? What’s Alice’s density matrix for Bob’s state assuming that her
initial state was |ψ1⟩?

Solution. (a) From Bob’s perspective, he knows that there is a 50% chance he’s getting
|0⟩ and a 50% chance he’s getting |+⟩. With that information we can write down the
following density matrix.

ρBob = ∑
i

pi |i⟩⟨i| =
1
2
|0⟩⟨0|+ 1

2
|+⟩⟨+| =

[1
2 0
0 0

]
+

[1
4

1
4

1
4

1
4

]
=

[3
4

1
4

1
4

1
4

]
(b) Assuming Alice’s initial state was |0⟩, then she knows exactly which state she

sent to Bob and hence she knows what state he measured: ρAlice,|0⟩ =

[
1 0
0 0

]
. When

she sends the |+⟩, Bob will measure |0⟩ and |1⟩ with equal probabilities. Thus the off
diagonal terms vanish and we are left with

ρAlice,|+⟩ = ∑
i

pi |i⟩⟨i| =
[1

2 0
0 1

2

]
.

(c) From Bob’s perspective, he’s getting |ψ0⟩ with probability cos2(π/8) and |ψ1⟩
with probability sin2(π/8). Thus from his perspective he has the following density
matrix.

ρBob = cos2(π/8) |ψ0⟩⟨ψ0|+ sin2(π/8) |ψ1⟩⟨ψ1|

=

[
cos4(π

8 ) cos3(π
8 ) sin

(
π
8

)
cos3(π

8 ) sin
(

π
8

)
cos2(π

8 ) sin2(π
8 )

]
+

[
sin4(π

8 ) − cos
(

π
8

)
sin3(π

8 )
− cos

(
π
8

)
sin3(π

8 ) cos2(π
8 ) sin2(π

8 )

]
=

[3
4

1
4

1
4

1
4

]
(by judicious use of wolfram alpha)

Interestingly, this is the same as in (a)!
(d) Start with Alice sending |ψ0⟩. Similar to what we saw in part (b), Alice knows

that once Bob measure the state will be in state |0⟩ with probability cos2(π
8 ) and in state

|1⟩ with probability sin2(π
8 ).

ρAlice,|ψ0⟩ =

[
1
4(2+

√
2) 0

0 1
4(2−

√
2)

]
A similar computation can be done if Alice sends |ψ1⟩.

ρAlice,|ψ1⟩ =

[
1
4(2−

√
2) 0

0 1
4(2+

√
2)

]
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