Quantum Information Processing Assignment 8

Name: Nate Stemen (20906566)
Due: Tues, Nov 18, 2020 11:59 PM
Email: nate.stemen@uwaterloo.ca
I worked with Chelsea Komlo and Wilson Wu on this assignment.

Problem 1

Kraus operators for the reset channel.

Solution. Let $E_{0}=|0\rangle\langle 0|$ and $E_{1}=|0\rangle\langle 1|$. We'll first show these are valid Kraus operators, before showing they produce the desired quantum channel. Let $|\psi\rangle=$ $\alpha|0\rangle+\beta|1\rangle$ be our systems input state and the result after the channel be $\mathcal{E}(\rho)$.

$$
\begin{aligned}
\mathcal{E}(\rho) & =\sum_{k} E_{k} \rho E_{k}^{+} \\
& =|0\rangle\langle 0| \rho|0\rangle\langle 0|+|0\rangle\langle 1| \rho|1\rangle\langle 0| \\
& =|0\rangle \underbrace{\langle 0 \mid \psi\rangle\langle\psi \mid 0\rangle}_{|\alpha|^{2}}\langle 0|+|0\rangle \underbrace{\langle 1 \mid \psi\rangle\langle\psi \mid 1\rangle}_{|\beta|^{2}}\langle 0| \\
& =|\alpha|^{2}|0\rangle\langle 0|+|\beta|^{2}|0\rangle\langle 0| \\
& =|0\rangle\langle 0|
\end{aligned}
$$

With this we conclude that $\left|\psi_{\text {out }}\right\rangle=|0\rangle$.
We'll now show these are valid Kraus operators.

$$
\begin{aligned}
\sum_{k} E_{k}^{\dagger} E_{k} & =|0\rangle\langle 0 \mid 0\rangle\langle 0|+|1\rangle\langle 0 \mid 0\rangle\langle 1| \\
& =|0\rangle\langle 0|+|1\rangle\langle 1|=\mathbb{1}
\end{aligned}
$$

Thus these operators are trace preserving and hence are valid Kraus operators.

Problem 2

Distinguishing between $|0\rangle$ vs. $|+\rangle$ revisited.

Solution. Here we will use the Holevo-Helstrom theorem to show there does does not exist a measurement procedure that performs better than succeeding with probability $\geq 0.85 \ldots$. To do this we will need to calculate the trace distance between these two states.

$$
A:=\rho_{0}-\rho_{+}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]-\frac{1}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{rr}
1 & -1 \\
-1 & -1
\end{array}\right]
$$

In order to calculate $\operatorname{tr}|A|$ we will use $\operatorname{tr}|A|=\operatorname{tr} \sqrt{A^{+} A}$.

$$
A^{\dagger} A=\frac{1}{4}\left[\begin{array}{rr}
1 & -1 \\
-1 & -1
\end{array}\right]\left[\begin{array}{rr}
1 & -1 \\
-1 & -1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Thus taking the square root we have $\sqrt{A^{\dagger} A}=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Taking the trace we have $\operatorname{tr}|A|=\frac{2}{\sqrt{2}}$, and thus the maximum success probability is given by

$$
\frac{1}{2}+\frac{1}{4}\left\|\rho_{0}-\rho_{+}\right\|_{1}=\frac{1}{2}+\frac{1}{4} \cdot \frac{2}{\sqrt{2}}=\frac{1+\sqrt{2}}{2 \sqrt{2}} \approx 0.85 .
$$

With this we've shown 0.85 is the best probability we can achieve when distinguishing between $|0\rangle$ and $|+\rangle$, and hence there is no POVM measurement that does better.

Problem 3

A four-state distinguishing problem.
(a) Give a measurement in the Kraus form for this problem with as high a success probability as you can.
(b) Give a measurement in the Stinespring form for this problem with as high a success probability as you can.

Solution. (a) Let's first define the following operators.

$$
\begin{array}{ll}
A_{0}=\frac{3}{4}\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right| & A_{1}=\frac{3}{4}\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right| \\
A_{2} & =\frac{3}{4}\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|
\end{array} A_{3}=\frac{3}{4}\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right|
$$

Please save us the algebra of showing us satisfy $\sum_{i} A_{i}^{\dagger} A_{i}=\mathbb{1}$. I promise I did it, I just can bother $\mathrm{T}_{\mathrm{E}} \mathrm{Xing}$ it right now. Now assume we are given $\rho_{k}:=\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|$ as the input. With that we want to calculate the probability of measuring the correct state. To do this let's first calculate $A_{k} \rho_{k} A_{k}^{\dagger}$.

$$
A_{k} \rho_{k} A_{k}^{+}=\frac{9}{16}\left|\psi_{k}\right\rangle\left\langle\psi_{k} \mid \psi_{k}\right\rangle\left\langle\psi_{k} \mid \psi_{k}\right\rangle\left\langle\psi_{k}\right|=\frac{9}{16}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|
$$

Now let's take the trace of that.

$$
\operatorname{tr}\left(A_{k} \rho_{k} A_{k}^{+}\right)=\frac{9}{16} \sum_{n=0}^{2} \underbrace{\left\langle n \mid \psi_{k}\right\rangle\left\langle\psi_{k} \mid n\right\rangle}_{\frac{1}{3}}=\frac{9}{16}
$$

Thus the best probability we can achieve is $\frac{9}{16}$.
(b) To put this in Stinespring form we can construct the following unitary matrix U.

$$
U=\left[\left.\begin{array}{l}
A_{0} \\
A_{1} \\
A_{2} \\
A_{3}
\end{array} \right\rvert\, \quad \mathbf{M}\right]
$$

Where W is chosen so as to make U unitary. We know we can do this because it was used in lecture...

