Quantum Information Processing Assignment 8

Name: Nate Stemen (20906566) Email: nate.stemen@uwaterloo.ca Due: Tues, Nov 18, 2020 11:59 PM Course: QIC 710

I worked with Chelsea Komlo and Wilson Wu on this assignment.

Problem 1

Kraus operators for the reset channel.

Solution. Let $E_0 = |0\rangle\langle 0|$ and $E_1 = |0\rangle\langle 1|$. We'll first show these are valid Kraus operators, before showing they produce the desired quantum channel. Let $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ be our systems input state and the result after the channel be $\mathcal{E}(\rho)$.

$$\begin{aligned} \mathcal{E}(\rho) &= \sum_{k} E_{k} \rho E_{k}^{\dagger} \\ &= |0\rangle \langle 0| \rho |0\rangle \langle 0| + |0\rangle \langle 1| \rho |1\rangle \langle 0| \\ &= |0\rangle \underbrace{\langle 0|\psi\rangle \langle \psi|0\rangle}_{|\alpha|^{2}} \langle 0| + |0\rangle \underbrace{\langle 1|\psi\rangle \langle \psi|1\rangle}_{|\beta|^{2}} \langle 0| \\ &= |\alpha|^{2} |0\rangle \langle 0| + |\beta|^{2} |0\rangle \langle 0| \\ &= |0\rangle \langle 0| \end{aligned}$$

With this we conclude that $|\psi_{\text{out}}\rangle = |0\rangle$.

We'll now show these are valid Kraus operators.

$$\sum_{k} E_{k}^{\dagger} E_{k} = \ket{0} \langle 0 \ket{0} \langle 0 | + \ket{1} \langle 0 | 0 \rangle \langle 1 |$$

= $\ket{0} \langle 0 | + \ket{1} \langle 1 | = \mathbb{1}$

Thus these operators are trace preserving and hence are valid Kraus operators.

Problem 2

	1
Distinguishing between $ 0\rangle$ vs. $ +\rangle$ revisited.	
	i.

Solution. Here we will use the Holevo-Helstrom theorem to show there does does not exist a measurement procedure that performs better than succeeding with probability $\geq 0.85...$ To do this we will need to calculate the trace distance between these two states.

$$A \coloneqq \rho_0 - \rho_+ = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & -1 \end{bmatrix}$$

In order to calculate tr |A| we will use tr $|A| = \text{tr } \sqrt{A^{\dagger}A}$.

$$A^{\dagger}A = \frac{1}{4} \begin{bmatrix} 1 & -1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & -1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Thus taking the square root we have $\sqrt{A^{\dagger}A} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Taking the trace we have tr $|A| = \frac{2}{\sqrt{2}}$, and thus the maximum success probability is given by

$$\frac{1}{2} + \frac{1}{4} \|\rho_0 - \rho_+\|_1 = \frac{1}{2} + \frac{1}{4} \cdot \frac{2}{\sqrt{2}} = \frac{1 + \sqrt{2}}{2\sqrt{2}} \approx 0.85$$

With this we've shown 0.85 is the best probability we can achieve when distinguishing between $|0\rangle$ and $|+\rangle$, and hence there is no POVM measurement that does better.

Problem 3	
A four-st	ate distinguishing problem.
1	e a measurement in the Kraus form for this problem with as high a cess probability as you can.
	e a measurement in the Stinespring form for this problem with as high a cess probability as you can.

Solution. (a) Let's first define the following operators.

$$\begin{split} A_0 &= \frac{3}{4} |\psi_0\rangle \langle \psi_0| & A_1 &= \frac{3}{4} |\psi_1\rangle \langle \psi_1| \\ A_2 &= \frac{3}{4} |\psi_2\rangle \langle \psi_2| & A_3 &= \frac{3}{4} |\psi_3\rangle \langle \psi_3| \end{split}$$

Please save us the algebra of showing us satisfy $\sum_i A_i^{\dagger} A_i = \mathbb{1}$. I promise I did it, I just can bother TEXing it right now. Now assume we are given $\rho_k := |\psi_k\rangle\langle\psi_k|$ as the input. With that we want to calculate the probability of measuring the correct state. To do this let's first calculate $A_k \rho_k A_k^{\dagger}$.

$$A_k
ho_k A_k^\dagger = rac{9}{16} \ket{\psi_k}ra{\psi_k}{\psi_k}ra{\psi_k}ra{\psi_k}ra{\psi_k}ra{\psi_k} = rac{9}{16} \ket{\psi_k}\!ra{\psi_k}$$

Now let's take the trace of that.

$$\operatorname{tr}\left(A_{k}\rho_{k}A_{k}^{\dagger}\right) = \frac{9}{16}\sum_{n=0}^{2}\underbrace{\langle n|\psi_{k}\rangle\langle\psi_{k}|n\rangle}_{\frac{1}{3}} = \frac{9}{16}$$

Thus the best probability we can achieve is $\frac{9}{16}$.

(b) To put this in Stinespring form we can construct the following unitary matrix *U*.

$$U = \begin{bmatrix} A_0 \\ A_1 \\ A_2 \\ A_3 \end{bmatrix} \quad \mathbf{W} \quad \end{bmatrix}$$

Where *W* is chosen so as to make *U* unitary. We know we can do this because it was used in lecture...