Quantum Information Processing Assignment 10

Name: Nate Stemen (20906566)
Due: Mon, Dec 7, 2020 11:59 PM
Email: nate.stemen@uwaterloo.ca
I worked with Chelsea Komlo and Wilson Wu on this assignment.

Problem 1

Prove that $R_{1} R_{2}$ is a rotation by angle $2\left(\theta_{1}-\theta_{2}\right)$.

Solution. Here we use $\left|\psi_{\alpha}\right\rangle$ and $\left|\psi_{\beta}\right\rangle$ to denote the two states we will use to define R_{1} and R_{2} respectively. This is only done because it's easier to typeset than $\left|\psi_{\theta_{1}}\right\rangle$. The first thing we'll need to do calculate $\left|\psi_{\alpha}\right\rangle\left\langle\psi_{\alpha}\right|$.

$$
\begin{aligned}
\left|\psi_{\alpha}\right\rangle\left\langle\psi_{\alpha}\right| & =(\cos \alpha|0\rangle+\sin \alpha|1\rangle)(\cos \alpha\langle 0|+\sin \alpha\langle 1|) \\
& =\cos ^{2} \alpha|0\rangle\langle 0|+\sin ^{2} \alpha|1\rangle\langle 1|+\sin \alpha \cos \alpha|1\rangle\langle 0|+\cos \alpha \sin \alpha|0\rangle\langle 1| \\
\left|\psi_{\alpha}^{\perp}\right\rangle\left\langle\psi_{\alpha}^{\perp}\right| & =\sin ^{2}|0\rangle\langle 0|+\cos ^{2} \alpha|1\rangle\langle 1|-\sin \alpha \cos \alpha|0\rangle\langle 1|-\sin \alpha \cos \alpha|1\rangle\langle 0|
\end{aligned}
$$

With these we can now calculate R_{1}.

$$
\begin{aligned}
R_{1} & =\left|\psi_{\alpha}\right\rangle\left\langle\psi_{\alpha}\right|-\left|\psi_{\alpha}^{\perp}\right\rangle\left\langle\psi_{\alpha}^{\perp}\right| \\
& =\cos 2 \alpha|0\rangle\langle 0|-\cos 2 \alpha|1\rangle\langle 1|+\sin 2 \alpha|1\rangle\langle 0|+\sin 2 \alpha|0\rangle\langle 1|
\end{aligned}
$$

where I've used the fact that $\cos ^{2} \alpha-\sin ^{2} \alpha=\cos 2 \alpha$ and $2 \sin \alpha \cos \alpha=\sin 2 \alpha$. Now R_{2} should have the exact same form, but with β in place of α. We're now ready to calculate $R_{1} R_{2}$.

$$
\begin{aligned}
R_{1} R_{2}= & (\cos 2 \alpha \cos 2 \beta+\sin 2 \alpha \sin 2 \beta)|0\rangle\langle 0| \\
& +(\cos 2 \alpha \sin 2 \beta-\sin 2 \alpha \cos 2 \beta)|0\rangle\langle 1| \\
& +(\cos 2 \beta \sin 2 \alpha-\cos 2 \alpha \sin 2 \beta)|1\rangle\langle 0| \\
& +(\cos 2 \alpha \cos 2 \beta+\sin 2 \alpha \sin 2 \beta)|1\rangle\langle 1| \\
= & \cos (2(a-b))|0\rangle\langle 0|-\sin (2(a-b))|0\rangle\langle 1| \\
& +\sin (2(a-b))|1\rangle\langle 0|+\cos (2(a-b))|1\rangle\langle 1|
\end{aligned}
$$

Now using the fact that $|0\rangle$ and $|1\rangle$ represent the standard basis, we can expand $|0\rangle\langle 0|$ into matrices to see that $R_{1} R_{2}$ takes the following form.

$$
R_{1} R_{2}=\left[\begin{array}{rr}
\cos (2(a-b)) & -\sin (2(a-b)) \\
\sin (2(a-b)) & \cos (2(a-b))
\end{array}\right]
$$

This is the same form as an arbitrary rotation R_{θ} in two dimensions.

Problem 2

(a) Show that, for any classical algorithm, the number of f-queries required to solve this problem exactly is exponential in n.
(b) Show that there is a quantum algorithm that makes one single f-query and is guaranteed to find an $x \in\{0,1\}^{n}$ such that $f(x)=1$. (Hint: consider what a single iteration fo Grover's algorithm does.)

Solution. (a) It's possible for a classical algorithm to query $\frac{3}{4}$ of the entire space $\{0,1\}^{n}$ and not find a satisfying assignment. It's only once it queries in $\frac{3}{4}+1$ places can we guarantee that it finds a satisfying assignment. Thus we conclude the worst case scenario requires $\sim \frac{3}{4} 2^{n}$ queries.
(b) Let's first take a look at our state $H\left|0^{n}\right\rangle$.

$$
H\left|0^{n}\right\rangle=\sqrt{\frac{s_{0}}{2^{n}}}\left|A_{0}\right\rangle+\sqrt{\frac{s_{1}}{2^{n}}}\left|A_{1}\right\rangle=\frac{\sqrt{3}}{4}\left|A_{0}\right\rangle+\frac{1}{2}\left|A_{1}\right\rangle
$$

Here we've used the fact that $s_{0}=\frac{3}{4} 2^{n}$ and $s_{1}=\frac{1}{4} 2^{n}$. Now note that the angle this vector makes on the $\left|A_{0}\right\rangle,\left|A_{1}\right\rangle$ plane is $\theta=\frac{\pi}{6}$. Now when we perform a single iteration of Grover's algorithm we will be rotated to a vector with angle 3θ with respect to the $\left|A_{0}\right\rangle$ axis. Lucky for us $3 \theta=\frac{\pi}{2}$. Thus we've landed right on $\left|A_{1}\right\rangle$, and hence we've only made 1 query to f, and gotten our state vector in the right place. We can now measure it to obtain one of the (possibly) many values for which $f(x)=1$.

