The Gottesman-Knill Theorem

What is it and what does it mean?

Nate Stemen (he/they)
9/12/2020
QIC 710 Final Project

The Gottesman-Knill Theorem

Theorem ([Gottesman, 1998])

A quantum circuit using only the following elements can be efficiently simulated on a classical computer:

1. Qubits prepared in computational basis states
2. Quantum gates from the Clifford group
3. Measurements in the computational basis

What does a classical simulation of a quantum computer mean?

Two different main kinds of simulation possible:

What does a classical simulation of a quantum computer mean?

Two different main kinds of simulation possible:

Strong Simulation

Given an input x to our quantum computer, compute $p(x)$.

What does a classical simulation of a quantum computer mean?

Two different main kinds of simulation possible:

Strong Simulation

Given an input x to our quantum computer, compute $p(x)$.

Weak Simulation

Given an input x, compute a sample from $p(x)$.

What does a classical simulation of a quantum computer mean?

Two different main kinds of simulation possible:

Strong Simulation

Given an input x to our quantum computer, compute $p(x)$.

Weak Simulation

Given an input x, compute a sample from $p(x)$.

Gottesman-Knill theorem deals with weak simulation.
Strong simulation of quantum computers shown to be \#P-hard [Nest, 2010].

How can we (naïvely) simulate a quantum computer?

Suppose we have n qubits and we want to run them through D gates.

Final state contains $D-1$ matrix multiplications, each costing $O\left(2^{3 n}\right)^{1}$, so total cost is $O\left(D 2^{3 n}\right)$.
Simulating Grover's algorithm on 40 qubits took nearly a full day!
[Viamontes et al., 2004]
${ }^{1}$ Theoretically possible to get $O\left(2^{2.373 n}\right)$.

How can we (naïvely) simulate a quantum computer?

Suppose we have n qubits and we want to run them through D gates.

What if we restrict the gates A_{i} ?
${ }^{1}$ Theoretically possible to get $O\left(2^{2.373 n}\right)$.

Stabilizer Formalism

- Let $|\psi\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$

Stabilizer Formalism

- Let $|\psi\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$
- $X \otimes X|\psi\rangle=|\psi\rangle$ and $Z \otimes Z|\psi\rangle=|\psi\rangle$

Stabilizer Formalism

- Let $|\psi\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$
- $X \otimes X|\psi\rangle=|\psi\rangle$ and $Z \otimes Z|\psi\rangle=|\psi\rangle$
- $|\psi\rangle$ is the unique state stabilized by both of these operators.

Stabilizer Formalism

- Let $|\psi\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$
- $X \otimes X|\psi\rangle=|\psi\rangle$ and $Z \otimes Z|\psi\rangle=|\psi\rangle$
- $|\psi\rangle$ is the unique state stabilized by both of these operators.
- This hints at the possibility of describing some states not as vectors in $\mathbb{C}^{2 n}$, but of operators.

Pauli Group

Let X, Y, Z denote the standard single-qubit Pauli operators:

$$
X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad Y=\left(\begin{array}{rr}
0 & -\mathrm{i} \\
i & 0
\end{array}\right) \quad Z=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Pauli Group

Let X, Y, Z denote the standard single-qubit Pauli operators:

$$
X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad Y=\left(\begin{array}{rr}
0 & -\mathrm{i} \\
i & 0
\end{array}\right) \quad Z=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Take X_{i}, Y_{i}, Z_{i} to denote X, Y and Z acting on the i-th qubit, and with the identity everywhere else.

$$
X_{i}:=\mathbb{1} \otimes \cdots \otimes \stackrel{\text { th operator }}{\bar{X}} \quad \otimes \cdots \otimes \mathbb{1}
$$

Pauli Group

Let X, Y, Z denote the standard single-qubit Pauli operators:

$$
X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad Y=\left(\begin{array}{rr}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right) \quad Z=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Take X_{i}, Y_{i}, Z_{i} to denote X, Y and Z acting on the i-th qubit, and with the identity everywhere else.

$$
P_{n}:=\left\{ \pm \mathbb{1}, \pm \mathrm{i} \mathbb{1}, \pm A_{i}, \pm \mathrm{i} A_{i}: A_{i} \in\left\{\mathbf{1}, X_{i}, Y_{i}, Z_{i}\right\}\right\} \equiv\left\langle X_{i}, Z_{i}\right\rangle
$$

- P_{n} forms a group under matrix multiplication.
- Every pair of elements either commute or anti-commute.
- $\left|P_{n}\right|=4 \cdot 4^{n}$

Stabilizer States

Let S be a subgroup of P_{n}. Define the vector space V_{S} as the states stabilized by everything in S.

$$
V_{S}:=\left\{|\psi\rangle \in \mathbb{C}^{2^{n}}: g|\psi\rangle=|\psi\rangle, \forall g \in S\right\}
$$

Example

Take P_{3} and subgroup $S=\left\{1, Z_{1} Z_{2}, Z_{2} Z_{3}, Z_{1} Z_{3}\right\}$. Note that $|000\rangle,|001\rangle,|110\rangle,|111\rangle$ are stabilized by $Z_{1} Z_{2}$, and $|000\rangle,|100\rangle,|011\rangle,|111\rangle$ are stabilized by $Z_{2} Z_{3}$. These, together with the fact that $Z_{1} Z_{3}=\left(Z_{1} Z_{2}\right)\left(Z_{2} Z_{3}\right)$ tell us that $V_{S}=\{|000\rangle,|111\rangle\}$. In this case we can write $S=\left\langle Z_{1} Z_{2}, Z_{2} Z_{3}\right\rangle$.

Stabilizer States

Let S be a subgroup of P_{n}. Define the vector space V_{S} as the states stabilized by everything in S.

$$
V_{S}:=\left\{|\psi\rangle \in \mathbb{C}^{2^{n}}: g|\psi\rangle=|\psi\rangle, \forall g \in S\right\}
$$

Example

Take P_{3} and subgroup $S=\left\{1, Z_{1} Z_{2}, Z_{2} Z_{3}, Z_{1} Z_{3}\right\}$. Note that $|000\rangle,|001\rangle,|110\rangle,|111\rangle$ are stabilized by $Z_{1} Z_{2}$, and $|000\rangle,|100\rangle,|011\rangle,|111\rangle$ are stabilized by $Z_{2} Z_{3}$. These, together with the fact that $Z_{1} Z_{3}=\left(Z_{1} Z_{2}\right)\left(Z_{2} Z_{3}\right)$ tell us that $V_{S}=\{|000\rangle,|111\rangle\}$. In this case we can write $S=\left\langle Z_{1} Z_{2}, Z_{2} Z_{3}\right\rangle$.
S and V_{S} uniquely determine each other!

Stabilizer States

Let S be a subgroup of P_{n}. Define the vector space V_{S} as the states stabilized by everything in S.

$$
V_{S}:=\left\{|\psi\rangle \in \mathbb{C}^{2^{n}}: g|\psi\rangle=|\psi\rangle, \forall g \in S\right\}
$$

Example

Take P_{3} and subgroup $S=\left\{1, Z_{1} Z_{2}, Z_{2} Z_{3}, Z_{1} Z_{3}\right\}$. Note that $|000\rangle,|001\rangle,|110\rangle,|111\rangle$ are stabilized by $Z_{1} Z_{2}$, and $|000\rangle,|100\rangle,|011\rangle,|111\rangle$ are stabilized by $Z_{2} Z_{3}$. These, together with the fact that $Z_{1} Z_{3}=\left(Z_{1} Z_{2}\right)\left(Z_{2} Z_{3}\right)$ tell us that $V_{S}=\{|000\rangle,|111\rangle\}$. In this case we can write $S=\left\langle Z_{1} Z_{2}, Z_{2} Z_{3}\right\rangle$.

- S must be Abelian
- $-\mathbb{1} \notin S$
- $|S|=2^{n-k}$ for some $k<n$

What happens when we want to apply a gate?

Let U by an arbitary unitary gate from $\mathbf{U}\left(2^{n}\right),|\psi\rangle \in V_{S}$ and $g \in S$.

What happens when we want to apply a gate?

Let U by an arbitary unitary gate from $\mathbf{U}\left(2^{n}\right),|\psi\rangle \in V_{S}$ and $g \in S$.

$$
U|\psi\rangle=U g|\psi\rangle=U g U^{+} U|\psi\rangle=g^{\prime} U|\psi\rangle
$$

What happens when we want to apply a gate?

Let U by an arbitary unitary gate from $\mathbf{U}\left(2^{n}\right),|\psi\rangle \in V_{S}$ and $g \in S$.

$$
U|\psi\rangle=U g|\psi\rangle=U g U^{+} U|\psi\rangle=g^{\prime} U|\psi\rangle
$$

So $U|\psi\rangle$ is stabilized by $U g U^{\dagger}$, and in general $U V_{S}$ is stabilized by $U S U^{+}=\left\{U g U^{+}: g \in S\right\}$.

Corollary

If S is generated by g_{1}, \ldots, g_{n}, then $U S U^{\dagger}$ is generated by $U g_{1} U^{\dagger}, \ldots, U g_{n} U^{\dagger}$.

What happens when we want to apply a gate?

Let U by an arbitary unitary gate from $\mathbf{U}\left(2^{n}\right),|\psi\rangle \in V_{S}$ and $g \in S$.

$$
U|\psi\rangle=U g|\psi\rangle=U g U^{+} U|\psi\rangle=g^{\prime} U|\psi\rangle
$$

So $U|\psi\rangle$ is stabilized by $U g U^{\dagger}$, and in general $U V_{S}$ is stabilized by $U S U^{+}=\left\{U g U^{+}: g \in S\right\}$.

Corollary

If S is generated by g_{1}, \ldots, g_{n}, then $U S U^{\dagger}$ is generated by $U g_{1} U^{\dagger}, \ldots, U g_{n} U^{\dagger}$.
If G is an Abelian group with $|G|$ the number of elements in G, then the number of generators of G is bounded by $\log _{2}|G|$. In particular the number of generators is bounded above by n.

What happens when we want to apply a gate?

Let U by an arbitary unitary gate from $\mathbf{U}\left(2^{n}\right),|\psi\rangle \in V_{S}$ and $g \in S$.

$$
U|\psi\rangle=U g|\psi\rangle=U g U^{+} U|\psi\rangle=g^{\prime} U|\psi\rangle
$$

So $U|\psi\rangle$ is stabilized by $U g U^{\dagger}$, and in general $U V_{S}$ is stabilized by $U S U^{+}=\left\{U g U^{+}: g \in S\right\}$.

Corollary

If S is generated by g_{1}, \ldots, g_{n}, then $U S U^{\dagger}$ is generated by $U g_{1} U^{\dagger}, \ldots, U g_{n} U^{\dagger}$.

If G is an Abelian group with $|G|$ the number of elements in G, then the number of generators of G is bounded by $\log _{2}|G|$. In particular the number of generators is bounded above by n.

What if $U g U^{\dagger}$ doesn't land back in P_{n} ?

Clifford Group

What if $U g U^{\dagger}$ doesn't land back in P_{n} ?

Theorem

Suppose U in any unitary on n qubits with the property that for $g \in P_{n}$ we have $U g U^{\dagger} \in P_{n}$. Then U can be composed from $O\left(n^{2}\right)$ Hadamard, CNOT, and phase gates.

Clifford Group

What if $U g U^{\dagger}$ doesn't land back in P_{n} ?

Theorem

Suppose U in any unitary on n qubits with the property that for $g \in P_{n}$ we have $U g U^{\dagger} \in P_{n}$. Then U can be composed from $O\left(n^{2}\right)$ Hadamard, CNOT, and phase gates.

Definition

The Clifford Group is defined to be the set of operators that leave Pauli operators invariant under conjugation.

$$
C_{n}:=\left\{V \in \mathbf{U}\left(2^{n}\right): V P_{n} V^{+}=P_{n}\right\}
$$

Clifford Group

Theorem

Suppose U in any unitary on n qubits with the property that for $g \in P_{n}$ we have $U g U^{\dagger} \in P_{n}$. Then U can be composed from $O\left(n^{2}\right)$ Hadamard, CNOT, and phase gates.

Definition

The Clifford Group is defined to be the set of operators that leave Pauli operators invariant under conjugation.

$$
C_{n}:=\left\{V \in \mathbf{U}\left(2^{n}\right): V P_{n} V^{+}=P_{n}\right\}
$$

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right) \quad P=\left(\begin{array}{ll}
1 & 0 \\
0 & \mathrm{i}
\end{array}\right)
$$

CNOT

Recap

1. Simulating a quantum computer in general is really hard!

Recap

1. Simulating a quantum computer in general is really hard!
2. What can we simulate more easily?

Recap

1. Simulating a quantum computer in general is really hard!
2. What can we simulate more easily?
3. Stabilizer formalism gave us a way to track operators instead of state vectors (duality between subgroup S of Paulis and vector space of stabilised states V_{S})

Recap

1. Simulating a quantum computer in general is really hard!
2. What can we simulate more easily?
3. Stabilizer formalism gave us a way to track operators instead of state vectors (duality between subgroup S of Paulis and vector space of stabilised states V_{S})
4. Keeping track of the generators of a stabilizer S provide a succinct way to understand how S is changing ($\log |S|$ generators)

Recap

1. Simulating a quantum computer in general is really hard!
2. What can we simulate more easily?
3. Stabilizer formalism gave us a way to track operators instead of state vectors (duality between subgroup S of Paulis and vector space of stabilised states V_{S})
4. Keeping track of the generators of a stabilizer S provide a succinct way to understand how S is changing ($\log |S|$ generators)
5. Found that elements of the Clifford group can efficiently build elements that conjugate the Pauli group back to the Pauli group

Back to the Theorem

Theorem ([Gottesman, 1998])

A quantum circuit using only the following elements can be efficiently simulated on a classical computer:

1. Qubits prepared in computational basis states
2. Quantum gates from the Clifford group
3. Measurements in the computational basis

- Take $|\psi\rangle=|0\rangle^{\otimes n}$. Now we can say $S=\left\langle Z_{1}, \ldots, Z_{n}\right\rangle$.
- Under some action $U \in C_{n}$ state will evolve to $U|\psi\rangle=U g U^{\dagger} U|\psi\rangle$ for $g \in S$
- Switch over to describing the change in generators of S
- Need to compute $U Z_{1} U^{\dagger}, \ldots, U Z_{n} U^{\dagger}$

Back to the Theorem

Recap

We have $|\psi\rangle=|0\rangle^{\otimes n}, S=\left\langle Z_{1}, \ldots, Z_{n}\right\rangle$, and $U \in C_{n}$. We know that $U|\psi\rangle=g^{\prime} U|\psi\rangle$, so in order to figure out where it evolves to, need to compute the new generators of the space $U V_{S}$ which are $U Z_{1} U^{+}, \ldots, U Z_{n} U^{\dagger}$.

X_{1}	1
X_{2}	0
X_{3}	1
Z_{1}	0
Z_{2}	0
Z_{3}	1
± 1	0

Table 1: Encoding $X_{1} X_{3} Z_{3}$

What does this mean?

What makes quantum computers powerful?

What does this mean?

What makes quantum computers powerful?
Not just entanglement!

What does this mean?

What makes quantum computers powerful?
Not just entanglement!

Quantum
teleportation

What does this mean?

What makes quantum computers powerful?
Not just entanglement!

Superdense coding

Where do we go from here?

- Clifford gates aren't enough for universal quantum computation

Where do we go from here?

- Clifford gates aren't enough for universal quantum computation
- Clifford group shown to be \oplus L-complete [Aaronson and Gottesman, 2004]

Where do we go from here?

- Clifford gates aren't enough for universal quantum computation
- Clifford group shown to be \oplus L-complete [Aaronson and Gottesman, 2004]
- Adding any 1 or 2-qubit gate ${ }^{2}$ will turn the Cliffords into a universal set [Shi, 2002]

[^0]
Conclusion

Assuming

$$
\mathbf{B Q P} \neq \mathbf{P} \neq \oplus \mathbf{L}
$$

Strong simulation of quantum computers is really hard.
Clifford group is only capable of solving relatively easy problems (both from classical and quantum POV).

Quantum entanglement is not the only contributing factor to the power of quantum computers!

References i

Aaronson，S．and Gottesman，D．（2004）．
Improved simulation of stabilizer circuits．
Phys．Rev．A，70：052328．
嗇 Bravyi，S．and Kitaev，A．（2004）．
Universal quantum computation with ideal clifford gates and noisy ancillas．
Physical Review A， 71.
嗇 Cuffaro，M．E．（2015）．
On the Significance of the Gottesman－Knill Theorem．
The British Journal for the Philosophy of Science，68（1）：91－121．
嗇 Gottesman，D．（1998）．
The Heisenberg Representation of Quantum Computers．
arXiv e－prints，pages quant－ph／9807006．

围 Nest, M. (2010).
Classical simulation of quantum computation, the gottesmann-knill theorem, and slightly beyond.
Quantum Information \& Computation, 10:258-271.
E Shi, Y. (2002).
Both toffoli and controlled-not need little help to do universal quantum computation.
Quantum Information and Computation, 3.
R Viamontes, G., Markov, I., and Hayes, J. (2004).
Improving gate-level simulation of quantum circuits.
Quantum Information Processing, 2.
\oplus Thank you! ${ }^{\oplus}$
Questions?

Example

Alice's Broken Quantum Computer ©

Alice's quantum computer is working too well. Instead of performing single controlled-NOT gates, it does three at a time.
 What is it actually doing?

Example

Alice's Broken Quantum Computer ()

Alice's quantum computer is working too well. Instead of performing single controlled-NOT gates, it does three at a time.
 What is it actually doing?

Because $X_{1}, X_{2}, Z_{1}, Z_{2}$ generate the Pauli group we can follow what happens to them under the evolution of this circuit.

$$
X_{1}=X \otimes \mathbb{1} \xrightarrow{\text { CNOT } 1} \text { CNOT } \cdot(X \otimes \mathbb{1}) \cdot \mathrm{CNOT}^{+}=X \otimes X
$$

Example

Alice's Broken Quantum Computer ©

Alice's quantum computer is working too well. Instead of performing single controlled-NOT gates, it does three at a time.

What is it actually doing?
Because $X_{1}, X_{2}, Z_{1}, Z_{2}$ generate the Pauli group we can follow what happens to them under the evolution of this circuit.

$$
\begin{aligned}
& X_{1}=X \otimes \mathbb{1} \xrightarrow{\text { CNOT } 1} X \otimes X \xrightarrow{\text { CNOT } 2} \mathbb{1} \otimes X \xrightarrow{\text { CNOT } 3} \mathbb{1} \otimes X=X_{2} \\
& Z_{1}=Z \otimes \mathbb{1} \xrightarrow{\text { CNOT } 1} \mathrm{Z} \otimes \mathbb{1} \xrightarrow{\text { CNOT } 2} \mathrm{Z} \otimes Z \xrightarrow{\text { CNOT } 3} \mathbb{1} \otimes \mathrm{Z}=\mathrm{Z}_{2}
\end{aligned}
$$

Further, we can show $X_{1} \longleftrightarrow X_{2}$ and $Z_{1} \longleftrightarrow Z_{2}$. This is exactly a swap operation!

Example, continued

Alice's less Broken Quantum Computer ©

By dint of no little hard work, Alice has partially fixed her quantum computer. Now it only does 2 CNOTs at a time. Unfortunately, she can only get this improvement if she puts a $|0\rangle$ as the second input
 qubit. What does it do now?

In this case we see the initial state $\left|\psi_{0}\right\rangle=|\alpha\rangle \otimes|0\rangle$ is stabilized by Z_{2}.

State will always be a +1 eigenvector of Z_{2}, so it follows that $(Z \otimes \mathbb{1})(Z \otimes Z)=\mathbb{1} \otimes Z$.

Circuit still performs a swap!

Example, continued

Alice's less Broken Quantum Computer ©

By dint of no little hard work, Alice has partially fixed her quantum computer. Now it only does 2 CNOTs at a time. Unfortunately, she can only get this improvement if she puts a $|0\rangle$ as the second input
 qubit. What does it do now?

In this case we see the initial state $\left|\psi_{0}\right\rangle=|\alpha\rangle \otimes|0\rangle$ is stabilized by Z_{2}.

$$
\begin{aligned}
& X_{1}=X \otimes \mathbb{1} \xrightarrow{\text { CNOT } 1} X \otimes X \xrightarrow{\text { CNOT } 2} \mathbb{1} \otimes X \\
& Z_{1}=Z \otimes \mathbb{1} \xrightarrow{\text { CNOT } 1} Z \otimes \mathbb{1} \xrightarrow{\text { CNOT } 2} Z \otimes Z \\
& Z_{2}=\mathbb{1} \otimes Z \xrightarrow{\text { CNOT } 1} Z \otimes Z \xrightarrow{\text { CNOT } 2} \mathrm{Z} \otimes \mathbb{1}
\end{aligned}
$$

State will alwavs be a +1 eipenvector of 7, so it follows that $(7 \otimes \pi)(7 \otimes 7)=\pi \otimes 7$

Example, continued

Alice's less Broken Quantum Computer ©

By dint of no little hard work, Alice has partially fixed her quantum computer. Now it only does 2 CNOTs at a time. Unfortunately, she can only get this improvement if she puts a $|0\rangle$ as the second input
 qubit. What does it do now?

In this case we see the initial state $\left|\psi_{0}\right\rangle=|\alpha\rangle \otimes|0\rangle$ is stabilized by Z_{2}.

$$
X_{1} \longrightarrow \mathbb{1} \otimes X \quad Z_{1} \longrightarrow Z \otimes Z \quad Z_{2} \longrightarrow Z \otimes \mathbb{1}
$$

State will always be a +1 eigenvector of Z_{2}, so it follows that $(Z \otimes \mathbb{1})(Z \otimes Z)=\mathbb{1} \otimes Z$.

Circuit still performs a swap!

Example, continued

Alice's less Broken Quantum Computer ©

By dint of no little hard work, Alice has partially fixed her quantum computer. Now it only does 2 CNOTs at a time. Unfortunately, she can only get this improvement if she puts a $|0\rangle$ as the second input
 qubit. What does it do now?

In this case we see the initial state $\left|\psi_{0}\right\rangle=|\alpha\rangle \otimes|0\rangle$ is stabilized by Z_{2}.

$$
X_{1} \longrightarrow \mathbb{1} \otimes X \quad Z_{1} \longrightarrow Z \otimes Z \quad Z_{2} \longrightarrow Z \otimes \mathbb{1}
$$

State will always be a +1 eigenvector of Z_{2}, so it follows that $(Z \otimes \mathbb{1})(Z \otimes Z)=\mathbb{1} \otimes Z$.

$$
X_{1} \longrightarrow \mathbb{1} \otimes X \quad Z_{1} \longrightarrow \mathbb{1} \otimes Z
$$

Circuit still performs a swap!

[^0]: ${ }^{2}$ That doesn't map computational basis states to computational basis states

