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The Gottesman-Knill Theorem

Theorem ([Gottesman, 1998])
A quantum circuit using only the following elements can be efficiently simulated on
a classical computer:

1. Qubits prepared in computational basis states
2. Quantum gates from the Clifford group
3. Measurements in the computational basis

1/18



What does a classical simulation of a quantum computer mean?

Two different main kinds of simulation possible:

Strong Simulation
Given an input 𝑥 to our quantum computer, compute 𝑝(𝑥).

Weak Simulation
Given an input 𝑥, compute a sample from 𝑝(𝑥).

Gottesman-Knill theorem deals with weak simulation.

Strong simulation of quantum computers shown to be #P-hard [Nest, 2010].
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How can we (naïvely) simulate a quantum computer?

Suppose we have 𝑛 qubits and we want to run them through 𝐷 gates.

…

…

…

ℂ2𝑛 ∋ |𝜓􏽼 𝐴1 𝐴2 𝐴𝐷 𝐴𝐷⋯𝐴2𝐴1 |𝜓􏽼

Final state contains 𝐷 − 1 matrix multiplications, each costing 𝑂􏿴23𝑛􏿷1, so total cost is
𝑂􏿴𝐷23𝑛􏿷.

Simulating Grover’s algorithm on 40 qubits took nearly a full day!
[Viamontes et al., 2004]

1Theoretically possible to get 𝑂􏿴22.373𝑛􏿷.
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How can we (naïvely) simulate a quantum computer?

Suppose we have 𝑛 qubits and we want to run them through 𝐷 gates.

…

…

…

ℂ2𝑛 ∋ |𝜓􏽼 𝐴1 𝐴2 𝐴𝐷 𝐴𝐷⋯𝐴2𝐴1 |𝜓􏽼

What if we restrict the gates 𝐴𝑖?

1Theoretically possible to get 𝑂􏿴22.373𝑛􏿷.
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Stabilizer Formalism

• Let |𝜓􏽼 = 1
√2
(|00⟩ + |11⟩)

• 𝑋 ⊗ 𝑋 |𝜓􏽼 = |𝜓􏽼 and 𝑍 ⊗ 𝑍 |𝜓􏽼 = |𝜓􏽼

• |𝜓􏽼 is the unique state stabilized by both of these operators.
• This hints at the possibility of describing some states not as vectors in ℂ2𝑛 , but of

operators.
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Pauli Group

Let 𝑋,𝑌, 𝑍 denote the standard single-qubit Pauli operators:

𝑋 =
⎛
⎜⎜⎜⎝
0 1
1 0

⎞
⎟⎟⎟⎠ 𝑌 =

⎛
⎜⎜⎜⎝
0 −i
i 0

⎞
⎟⎟⎟⎠ 𝑍 =

⎛
⎜⎜⎜⎝
1 0
0 −1

⎞
⎟⎟⎟⎠
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Take 𝑋𝑖, 𝑌𝑖, 𝑍𝑖 to denote 𝑋,𝑌 and 𝑍 acting on the 𝑖-th qubit, and with the identity
everywhere else.

𝑋𝑖 ≔ 𝟙 ⊗⋯⊗
𝑖th operator

⏞𝑋 ⊗⋯⊗ 𝟙

1
⋮

𝑖 𝑋

⋮
𝑛
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Take 𝑋𝑖, 𝑌𝑖, 𝑍𝑖 to denote 𝑋,𝑌 and 𝑍 acting on the 𝑖-th qubit, and with the identity
everywhere else.

𝑃𝑛 ≔ {±𝟙, ±i𝟙, ±𝐴𝑖, ±i𝐴𝑖 ∶ 𝐴𝑖 ∈ {1, 𝑋𝑖, 𝑌𝑖, 𝑍𝑖}} ≡ ⟨𝑋𝑖, 𝑍𝑖⟩

• 𝑃𝑛 forms a group under matrix multiplication.
• Every pair of elements either commute or anti-commute.
• |𝑃𝑛| = 4 ⋅ 4𝑛
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Stabilizer States

Let 𝑆 be a subgroup of 𝑃𝑛. Define the vector space 𝑉𝑆 as the states stabilized by
everything in 𝑆.

𝑉𝑆 ≔ 􏿺|𝜓􏽼 ∈ ℂ2𝑛 ∶ 𝑔 |𝜓􏽼 = |𝜓􏽼 , ∀𝑔 ∈ 𝑆􏿽

Example
Take 𝑃3 and subgroup 𝑆 = {𝟙, 𝑍1𝑍2, 𝑍2𝑍3, 𝑍1𝑍3}. Note that |000⟩ , |001⟩ , |110⟩ , |111⟩
are stabilized by 𝑍1𝑍2, and |000⟩ , |100⟩ , |011⟩ , |111⟩ are stabilized by 𝑍2𝑍3. These,
together with the fact that 𝑍1𝑍3 = (𝑍1𝑍2)(𝑍2𝑍3) tell us that 𝑉𝑆 = {|000⟩ , |111⟩}. In
this case we can write 𝑆 = ⟨𝑍1𝑍2, 𝑍2𝑍3⟩.

• 𝑆 must be Abelian
• −𝟙 ∉ 𝑆
• |𝑆| = 2𝑛−𝑘 for some 𝑘 < 𝑛
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What happens when we want to apply a gate?

Let 𝑈 by an arbitary unitary gate from U(2𝑛), |𝜓􏽼 ∈ 𝑉𝑆 and 𝑔 ∈ 𝑆.

𝑈 |𝜓􏽼 = 𝑈𝑔 |𝜓􏽼 = 𝑈𝑔𝑈†𝑈 |𝜓􏽼 = 𝑔′𝑈 |𝜓􏽼

So 𝑈 |𝜓􏽼 is stabilized by 𝑈𝑔𝑈†, and in general 𝑈𝑉𝑆 is stabilized by
𝑈𝑆𝑈† = 􏿺𝑈𝑔𝑈† ∶ 𝑔 ∈ 𝑆􏿽.

Corollary
If 𝑆 is generated by 𝑔1, … , 𝑔𝑛, then 𝑈𝑆𝑈† is generated by 𝑈𝑔1𝑈†, … ,𝑈𝑔𝑛𝑈†.

If 𝐺 is an Abelian group with |𝐺| the number of elements in 𝐺, then the number of
generators of 𝐺 is bounded by log2 |𝐺|. In particular the number of generators is
bounded above by 𝑛.

What if 𝑈𝑔𝑈† doesn’t land back in 𝑃𝑛?
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Clifford Group

What if 𝑈𝑔𝑈† doesn’t land back in 𝑃𝑛?

Theorem
Suppose 𝑈 in any unitary on 𝑛 qubits with the property that for 𝑔 ∈ 𝑃𝑛 we have
𝑈𝑔𝑈† ∈ 𝑃𝑛. Then 𝑈 can be composed from 𝑂(𝑛2) Hadamard, CNOT, and phase
gates.

Definition
The Clifford Group is defined to be the set of operators that leave Pauli operators
invariant under conjugation.

𝐶𝑛 ≔ 􏿺𝑉 ∈ U(2𝑛) ∶ 𝑉𝑃𝑛𝑉† = 𝑃𝑛􏿽

𝐻 = 1
√2

⎛
⎜⎜⎜⎝
1 1
1 −1

⎞
⎟⎟⎟⎠ 𝑃 =

⎛
⎜⎜⎜⎝
1 0
0 i

⎞
⎟⎟⎟⎠ CNOT
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Recap

1. Simulating a quantum computer in general is really hard!

2. What can we simulate more easily?
3. Stabilizer formalism gave us a way to track operators instead of state vectors

(duality between subgroup 𝑆 of Paulis and vector space of stabilised states 𝑉𝑆)
4. Keeping track of the generators of a stabilizer 𝑆 provide a succinct way to

understand how 𝑆 is changing (log |𝑆| generators)
5. Found that elements of the Clifford group can efficiently build elements that

conjugate the Pauli group back to the Pauli group
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Back to the Theorem

Theorem ([Gottesman, 1998])
A quantum circuit using only the following elements can be efficiently simulated on a
classical computer:

1. Qubits prepared in computational basis states
2. Quantum gates from the Clifford group
3. Measurements in the computational basis

• Take |𝜓􏽼 = |0⟩⊗𝑛. Now we can say 𝑆 = ⟨𝑍1, … , 𝑍𝑛⟩.
• Under some action 𝑈 ∈ 𝐶𝑛 state will evolve to 𝑈 |𝜓􏽼 = 𝑈𝑔𝑈†𝑈 |𝜓􏽼 for 𝑔 ∈ 𝑆
• Switch over to describing the change in generators of 𝑆
• Need to compute 𝑈𝑍1𝑈†, … ,𝑈𝑍𝑛𝑈†

10/18



Back to the Theorem

Recap
We have |𝜓􏽼 = |0⟩⊗𝑛, 𝑆 = ⟨𝑍1, … , 𝑍𝑛⟩, and 𝑈 ∈ 𝐶𝑛. We know that 𝑈 |𝜓􏽼 = 𝑔′𝑈 |𝜓􏽼, so
in order to figure out where it evolves to, need to compute the new generators of the
space 𝑈𝑉𝑆 which are 𝑈𝑍1𝑈†, … ,𝑈𝑍𝑛𝑈†.

• Only takes 2𝑛 + 1 bits to keep track of a generator: 2
for the 𝑛 Pauli generators, and 1 for the phase of ±1

• Specifying |𝜓􏽼 requires all 𝑛 generators, so 𝑛(2𝑛 + 1) bits
• Updating the generators only takes 𝑂(𝑛)
• Total cost 𝑂(𝑛2)

𝑋1 1
𝑋2 0
𝑋3 1
𝑍1 0
𝑍2 0
𝑍3 1

±1 0
Table 1: Encoding 𝑋1𝑋3𝑍3

11/18



What does this mean?

What makes quantum computers powerful?

Not just entanglement!
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What does this mean?

What makes quantum computers powerful?

Not just entanglement!

Quantum
teleportation

Alice

Bob

𝑀1

𝑀2

|𝜓􏽼 𝐻

|0⟩ 𝐻

|0⟩ 𝑋𝑀2 𝑍𝑀1 |𝜓􏽼
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What does this mean?

What makes quantum computers powerful?

Not just entanglement!

Superdense
coding

|0⟩ 𝐻 𝑋𝑎 𝑍𝑏 𝐻 𝑎

|0⟩ 𝑏
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Where do we go from here?

• Clifford gates aren’t enough for universal quantum computation

• Clifford group shown to be ⊕L-complete [Aaronson and Gottesman, 2004]
• Adding any 1 or 2-qubit gate2 will turn the Cliffords into a universal set [Shi, 2002]

P BQP⊕L #P

2That doesn’t map computational basis states to computational basis states
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Conclusion

Assuming
BQP ≠ P ≠ ⊕L

Strong simulation of quantum computers is really hard.

Clifford group is only capable of solving relatively easy problems (both from classical
and quantum POV).

Quantum entanglement is not the only contributing factor to the power of quantum
computers!
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,Thank you!,
Questions?
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Example

Alice’s Broken Quantum Computer /
Alice’s quantum computer is working too well. Instead of
performing single controlled-NOT gates, it does three at a time.
What is it actually doing?

Because 𝑋1, 𝑋2, 𝑍1, 𝑍2 generate the Pauli group we can follow what happens to them
under the evolution of this circuit.

𝑋1 = 𝑋 ⊗ 𝟙 CNOT 1−−−−−−−→ 𝑋 ⊗ 𝑋 CNOT 2−−−−−−−→ 𝟙 ⊗ 𝑋 CNOT 3−−−−−−−→ 𝟙 ⊗ 𝑋 = 𝑋2

𝑍1 = 𝑍 ⊗ 𝟙 CNOT 1−−−−−−−→ 𝑍 ⊗ 𝟙 CNOT 2−−−−−−−→ 𝑍 ⊗ 𝑍 CNOT 3−−−−−−−→ 𝟙 ⊗ 𝑍 = 𝑍2

Further, we can show 𝑋1 ⟷ 𝑋2 and 𝑍1 ⟷ 𝑍2. This is exactly a swap operation!
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Example, continued

Alice’s less Broken Quantum Computer ,
By dint of no little hard work, Alice has partially fixed her quantum
computer. Now it only does 2 CNOTs at a time. Unfortunately, she
can only get this improvement if she puts a |0⟩ as the second input
qubit. What does it do now?

|𝛼⟩

|0⟩

In this case we see the initial state |𝜓0􏽼 = |𝛼⟩ ⊗ |0⟩ is stabilized by 𝑍2.

𝑋1 ⟶ 𝟙⊗𝑋 𝑍1 ⟶ 𝑍⊗𝑍 𝑍2 ⟶ 𝑍⊗ 𝟙

State will always be a +1 eigenvector of 𝑍2, so it follows that (𝑍 ⊗ 𝟙)(𝑍 ⊗ 𝑍) = 𝟙 ⊗ 𝑍.

𝑋1 ⟶ 𝟙⊗𝑋 𝑍1 ⟶ 𝟙⊗𝑍

Circuit still performs a swap!
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