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This is a summary/exposition of the article titled The Dynamics of Entropies at the Onset of
Interactions by Kendall and Kempf Article can be

found on the
arXiv.

and was completed as a final project for AMATH 673
Advanced Quantum Theory.

1 Background

To begin, we first motivate the studies undertaken in Kendall and Kempf [2020] as well as
review some of the fundamental concepts that we will build upon.

1.1 Motivation

The theory of quantum mechanics has barely been around for a century, but it has managed
to sew it’s way into the core modern life; from lasers to Magnetic Resonance Imaging,
quantum mechanics is here to stay. Not only that, but it has managed to become one of the
most well tested theories in scientific history. With success seemingly around every corner,
there’s still a major advanced we haven’t cracked: quantum computing. Since the first
talk of quantum computers in the 1980’s scientists have been hard at work bringing this
technology to fruition. One of the main battles with such finnicky little beasts is coherence.
Classical bits are robust against measurement and being dropped on the ground, but don’t
dare look at a quantum bit or it might have an identity crisis!
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Coherence has been studied since the early days of quantum mechanics, and our continued
inability to tame it in the lab indicates there’s more to understand. When faced with such
a situation, it is helpful to look back at moments in history that we can draw similarities
to.

When physicists, mathematicians, and natural philosophers1 first studied the dynamics of
colliding objects, there were perhaps three major motivating factors:

1. it’s an interesting problem in it’s own right

2. developing an understanding of the problem can help kickstart technologies har-
nessing a newfound understanding

3. understanding a simplified problem is often good stepping stone to developing an
understanding of a more complicated one

Even though we might today consider the collision of physical bodies to be a relatively
simple problem, there are many ways to look at this problem, and one of the most
insightful is to think about the exchange of momenta. Now this varies depending on the
elasticity of the collision, but understanding how two objects “exchange” momentum
allows us to figure out what’s going on. The particularly insightful thing here is that we’re
viewing a system as possessing momentum, which then during the collision, exchanges
that property with another object before flying apart, or sticking together. With this
framework we can build models of how bodies exchange momenta, what the rules of
exchange are, and what exchanges are possible.

We do this with quantum bodies as well; usually motivated by the classical intuition. But,
can we build theories where the thing being exchanged and swapped around is coherence?
Are there rules for the exchange of coherence between quantum bodies? If we could
understand this, we might find ways to help tame decoherence or take advantage of
entanglement. That’s where resource theories come in to play.

1.2 Resource Theories

When thinking of goods and the exchange of them, it’s easy to think of economics, but
this idea can be much more powerful as alluded to above. Resource theory is a branch of
mathematics that allows us to dissect resources, and in particular their exchange and even
the processes of change where one resource might turn into another (maybe we can turn
coherence into entanglement?).

These general mathematical theories have been constructed Coecke et al. [2016], Fong
and Nava-Kopp [2015] for studying anything from chemistry to economics. While the
formal constructions are quite complicated using the language of category theory and

1Perhaps what they would have called themselves?
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Figure 1: Two interacting systems

“symmetric monoidal categories”, the ideas are quite simple. The naïve questions we
might want to ask are

• how do resources change during allowed processes?

• what are the allowed processes?

Or, put differently, what are the dynamics of our resources? These questions are encapsu-
lated by category theory because of the way arrows (changes) and composition of arrows
is the language of categories.

Quantum resource theories have also been developed with both coherence and entangle-
ment as the star in Chitambar and Gour [2019]. This means that we are taking coherence
and entanglement as resources, and using these theories we can study how they change
and are exchanged during interactions.

1.3 Density Matrices

Just briefly let’s recall some facts about the density matrix that will be helpful in under-
standing this paper.

Definition 1.1. A density matrix is a matrix of the form

ρ = ∑
n

pn |ψn⟩⟨ψn|

where pn ∈ [0, 1] are probabilities the mixed state ρ is in the pure state |ψn⟩ where the
states {|ψn⟩} form a basis for our (finite dimensional) Hilbert space H.
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The operator/matrix ρ as defined above will always be positive semi-definite2, Hermitian3,
and have trace equal to 14. These three properties follow immediately from the above
definition, along with the fact that the pn are probabilities and hence must sum to 1. Lastly
recall that if we have an observable Â, then the expectation value with respect to a mixed
state ρ is given by A = tr

(
ρÂ
)
.

1.4 Entropy

The paper is called “The dynamics of entropies at the onset of interactions”, so it’s probably
best if we have a good understanding of what the authors mean by entropy.

Let’s start with an arbitrary mixed state ρ. Because ρ has trace 1, we know tr ρ2 ≤ 1 with
equality holding if and only if ρ is not in fact mixed, but a pure state ρ = |ψ⟩⟨ψ|. With this
we can define a simple notion of “purity” by γ = tr ρ2. If ρ represents an n dimensional
system, then γ must fall in the range γ ∈

[ 1
n , 1
]

where the lowest values represent states
that are more mixed, and higher values correspond to states that are more pure.

A more sophisticated measure of purity or mixedness coming from (classical) information
theory would be the von Neumann entropy:

S(ρ) := − tr(ρ ln ρ).

This measure does have the advantage of having an information theoretic backing, but in
practice it is much harder to work with and calculate because of the logarithm.

Finally, there is one more notion we must introduce which is used in the paper. That of
n-Rényi entropies, which can be defined as follows.

Hn,B(ρ) :=
1

1 − n
log
(
trB
[
(trA ρ)n]) = 1

1 − n
log

(
∑

i
λn

i

)

Where λi are the eigenvalues of ρ. While it seems these entropies are not as frequently
used, they provide a unifying framework for common entropies one does care about. In
fact we have the max-entropy when n = 0, the min-entropy when n → ∞, and the von
Neumann entropy when n → 1.

2 Main Results

We start off with a simple calculation of the 2-norm coherence, and then use this to study
a two level quantum system.

2⟨ϕ| ρ |ϕ⟩ ≥ 0 for all |ϕ⟩ ∈ H.
3ρ† = ρ.
4tr ρ = 1.

4/12



Nathaniel Stemen Advanced Quantum Theory

2.1 2-Norm Coherence

Let’s start with showing the 2-norm coherence c2,B(ρ) is the sum of the off diagonal
elements squared of ρ. To start, let’s calculate the effect of the identity minus the dephasing
operator DB on our mixed state ρ.

(1 −DB)ρ =


ρ11 ρ12 · · · ρ1d

ρ21 ρ22
...

. . .
ρd1 ρdd

−


ρ11

ρ22
. . .

ρdd

 =


0 ρ12 · · · ρ1d

ρ21 0
...

. . .
ρd1 0

 =: ρ̃

To calculate the norm of this operator, we use the fact that density matrices are Hermitian
referenced in section 1.3 to simplify this as ∥ρ̃∥2 =

√
tr(ρ̃2). Now we can calculate the

diagonal elements of ρ̃2 so we can sum them up and get the trace.

ρ̃2 =


0 ρ12 · · · ρ1d

ρ21 0
...

. . .
ρd1 0


2

=


∑d

i ̸=1 ρ1iρi1

∑d
i ̸=2 ρ2iρi2

. . .

∑d
i ̸=d ρdiρid


This expression, with the fact that ρij = ρji allows us to write the trace, and hence the
2-norm coherence as

c2,B(ρ) := ∥(1 −DB)ρ∥2
2 =

d

∑
i ̸=j

i,j=1

∣∣ρij
∣∣2. (1)

The fact that we are representing ρ in the eigenbasis of B rather than the “natural” basis of
ρ where it is diagonal means ρ is likely to have off-diagonal elements in the first place. I
mention this because I’ve only ever worked with density matrices in the most “natural”
bases where things are quite simple.

Example 2.1. To get familiar with what the 2-norm coherence can do, let’s work with one
of the simplest examples: a qubit. This means both our observable B and density matrix ρ

are 2 × 2 matrices, and in particular we can write B (in it’s eigenbasis) as

B = bx |bx⟩⟨bx|+ by
∣∣by
〉〈

by
∣∣ = [bx 0

0 by

]
.

Where bx and by are the eigenvalues of B corresponding to eigenvectors |bx⟩ and
∣∣by
〉
. In

this basis we can then write down an arbitrary density matrix as

ρ = ∑
i,j∈{x,y}

ρij
∣∣bi
〉〈

bj
∣∣ = [ρxx ρxy

ρyx ρyy

]
.
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With these in place we can now calculate the variance of B as follows.

(∆B)2 := B2 − B2
= tr

(
ρB2)− [tr(ρB)]2

= tr

([
ρxxb2

x
ρyyb2

y

])
−
[

tr

([
ρxxbx

ρyyby

])]2

= ρxxb2
x + ρyyb2

y − ρ2
xxb2

x − 2ρxxρyybxby − ρ2
yyb2

y

= ρxxb2
x + (1 − ρxx)b2

y − ρ2
xxb2

x − 2ρxx(1 − ρxx)bxby − (1 − ρxx)
2b2

y

= ρxx

(
b2

x + b2
y − 2bxby

)
− ρ2

xx

(
b2

x + b2
y − 2bxby

)
=
(
ρxx − ρ2

xx
)(

bx − by
)2

Further, we can show that this can be written using both the purity γ := tr
(
ρ2) and the

2-norm coherence defined in equation (1).

1 − γ + c2,B

2
=

1
2
(
1 − tr

(
ρ2)+ c2,B

)
=

1
2

(
1 − ρ2

xx − ρ2
yy − 2

∣∣ρxy
∣∣2 + 2

∣∣ρxy
∣∣2)

=
1
2

(
1 − ρ2

xx − ρ2
yy

)
Note here that the ρii terms don’t need an absolute value because diagonal terms of the
density matrix are always real by the Hermiticity condition ρii = ρii. We can now use the
fact that tr ρ = 1 to write ρyy = 1 − ρxx to rewrite our equation purely in terms of ρxx.

1 − γ + c2,B

2
=

1
2
(
1 − ρ2

xx −
[
1 − 2ρxx + ρ2

xx
])

= ρxx − ρ2
xx

In total, this allows us to write the variance of an observable B as

(∆B)2 =
1 − γ + c2,B

2
(
bx − by

)2.

The maximally mixed state ρ = 1
N 1 has purity γ = 1

N , or in our case where N = 2, 1
2 . This

state possess no off diagonal elements, so conveniently c2,B(ρ) = 0. These observations
define (∆B)2

max = 1
4

(
bx − by

)2. As in Kendall and Kempf [2020] we can then write

(∆B)
2(∆B)2

max
= c2,B + µ (2)

where µ := 1 − γ is the “mixedness” of a state. Equation (2) shows us that we can think
of the variance as composed of two pieces: one which quantifies how much classical
uncertainty a state has, and one which quantifies coherent superposition.
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2.2 Interacting Systems

In this paper there are two main types of interaction that are looked at. First, we have our
system B which is brought into contact/interaction with another ancillary system A. In
full generality the Hamiltonian for this system would be

H = H(A)
free ⊗ 1 + 1 ⊗ H(B)

free + H(AB)
interaction.

This paper makes the simplifying assumption that the we’re working in the regime where
the interaction is completely dominant, and the free terms can be neglected. Further that
the interaction term can be written as HA ⊗ HB where HA and HB are some operators
acting one a single system. The first type of interaction looked at are interactions where
HA = A and HB = B where A, B are self-adjoint operators.

In this first case the time evolution operator will be U(t) = eitA⊗B, and we’ll first start
with a little detour to show a simple fact that will be very handy.

2.2.1 Commuting with the time evolution operator

As is often discussed in quantum mechanics class, when something commutes with the
Hamiltonian, that implies something is constant in time. This goes back to Hamilton’s
equation which states for a time independent Hamiltonian H, and observable f the time
evolution is given by

d f
dt

= { f , H}.

In the quantum case the Poisson bracket takes the form {−,−} → 1
ih̄ [−,−]. Thus we see

if something commutes with the Hamiltonian, then it must be constant in time. A direct
result of this is that the variance ∆ f (t) is independent of time, and hence d

dt ∆ f (t) = 0.
That said, in Kendall and Kempf [2020] the authors use the fact that an operator 1 ⊗ B
commuting with the time evolution operator of the form U(t) = eitA⊗B also implies
d
dt ∆B(t) = 0. This is not complicated, but non-trivial, and so we’ll go through the steps to
show that here.

(1 ⊗ B)U(t) = (1 ⊗ B)
∞

∑
n=0

(it)n

n!
(A ⊗ B)n

=
∞

∑
n=0

(it)n

n!
(1 ⊗ B)(An ⊗ Bn)

=
∞

∑
n=0

(it)n

n!

(
An ⊗ Bn+1

)
=

∞

∑
n=0

(it)n

n!
(A ⊗ B)n(1 ⊗ B) = U(t)(1 ⊗ B)
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Now this manipulation does not prove that commuting with the Hamiltonian always
implies an observable will commute with the time evolution operator, but the above can
be applied to an arbitrary Hamiltonian H that is time independent. Also it seems like this
technically proves d

dt ∆(1 ⊗ B) = 0, but surely we can make the identification of ∆(1 ⊗ B)
with ∆B.

So now we know ∆B is constant, and by equation (2) we can see c2,B + µ = constant
for a time independent Hamiltonian. In this case when entanglement goes up, we lose
coherence and vice versa. This is a great result, but bad for us since most of the time we
want both coherence and entanglement when working with quantum technologies.

In the second case, we take HA = A as before, but now we take HB to be some arbitrary
operator that does not commute with B. This disallows the manipulation we went through
in section 2.2.1, so we should expect this to be more complicated. Indeed the situation
is, and an important finding is that it’s actually possible to both increase coherence and
entanglement at the same time contrary to what I would have expected.5 The other major
finding is that, to leading order, the ancillary system A (which is taken to be a pure state)
loses purity at a rate proportional to the variance (∆B)2.

But the case where A is a pure state is quite a special state. The authors take this a step
further with initial state ρA ⊗ ρB where both systems start in mixed, but unentangled (with
each other) states. In this case the analysis is much more complicated and the authors
introduce a notion of n-fragility defined as

fn := −n
2

trB

(
ρn−1

B,0 [B, ρB,0]B
)

.

Using this the authors are able show that a systems variance “determines its ability to
reduce the purity of a system that it interacts with”. Further they identify the 2-fragility
as a measure of a systems ability to reduce it’s own purity as well! This is a very handy
characterization as it allows us to understand why some systems have a decohering effect
on systems they interact with. With the 2-fragility playing a particularly important role,
we take a moment to show it can be written in a slightly cleaner form below.

2.2.2 2-Fragility

In equation (26) of Kendall and Kempf [2020] the 2-fragility is given to be

f2 = −1
2

trB

(
[B, ρB,0]

2
)

(3)

5This is contrary to what I might have believed because coherence and entanglement are what make
quantum mechanics so powerful. Being able to get both increasing a the same time would be a major win for
quantum technologies!
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whereas the general definition of the n-fragility is given by

fn := −n
2

trB

(
ρn−1

B,0 [B, ρB,0]B
)

. (4)

We first show that f2 can be written as equation (3) starting from the definition given in
equation (4).

fn := − trB (ρB,0[B, ρB,0]B)

= − trB
(
ρB,0BρB,0B − ρ2

B,0B2)
= −1

2
trB
(
ρB,0BρB,0B + ρB,0BρB,0B − ρ2

B,0B2 − ρ2
B,0B2)

= −1
2

trB
(
ρB,0BρB,0B + BρB,0BρB,0 − ρB,0B2ρB,0 − Bρ2

B,0B
)

(cyclic property)

= −1
2

trB

(
[ρB,0, B]2

)
It’s worth noting that this identity does not hold for any other n. In fact the identity only
holds here because 2 + 2 = 2 · 2. To see this notice the terms in ρn−1[B, ρ]B are multiplica-
tions of n + 2 elements6, whereas [ρ, B]n in general has elements that are multiplications
of 2n elements.

3 Conclusion

In this summary we’ve tried to highlight the most interesting and most insightful pieces of
the paper The Dynamics of Entropies at the Onset of Interactions Kendall and Kempf [2020].7

We started out by motivating why one might care about the exchange of quantum resources
during processes like quantum computation and quantum communication. Armed with
the ideas of what quantum resources are we looked towards two level quantum systems in
example 2.1 to show how we can dissect a systems variance into two pieces: one pertaining
to classical ignorance, and one describing a systems coherent superposition8. With a basic
understanding of the tooling we applied the ideas to more complicated quantum systems
and eventually found a nice characterization of how coherence and entanglement can be
exchanged in section 2.2.

6For example if n = 3 we have ρ2[B, ρ]B = ρ2BρB − ρ3B2, and hence each term consists of 5 pieces (even if
some might be redundant).

7That said I recognize I was not able to cover everything in the paper, not just because there was too
much, but because I wasn’t able to understand everything either! That’s okay with me, because I was able to
understand quite lot, and take quite a few important lessons from this paper.

8How much of a stretch would it be to call this the quantum ignorance? It might just be the symmetry
appealing to me, but it does feel like “quantum ignorance” isn’t a bad way to describe superposition.
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4 Questions

4.1 Hamiltonian for system B

When working with a the time evolution operator of the form U(t) = eitA⊗HB we take

HB := −i
(∣∣bx

〉〈
by
∣∣− ∣∣by

〉〈
bx
∣∣) = −i

[
0 1
−1 0

]
=

[
0 −i
i 0

]
= σy.

I was confused here because we’re using A = εσx, which I’m assuming denotes the first
Pauli matrix

[
0 1
1 0

]
, but then define the operator HB in a way that obscures the fact that

it’s the second Pauli matrix. My best guess here is that of course in general |bx⟩ and
∣∣by
〉

are not the standard basis, and so generally this is not equal to σy. With that said, isn’t it
always a change of basis away?

4.2 Variance of which observable?

The paper characterizes how systems can reduce the purity of systems that come in contact
with it, and in particular show how it’s related to the variance. This is all well and good,
but it seems highly dependent on the observable we choose. If we have a system A
with large variance in position does that mean it decreases the purity of every system it
interacts with, or just some particular system where position plays an important role?

5 Applications

Before we end, I’m left with a few ideas concerning where this work could be applied.

5.1 Quantum Embezzlement

“Quantum embezzlement” described in van Dam and Hayden [2003], Cleve et al. [2018],
is a process that allows one to use a catalyst state to clone a quantum state in a way that
does not violate the no-cloning theorem. This process is extremely interesting because it
not only goes against a fundamental theorem in the field of quantum information, but it
provides a new mechanism for doing something once thought impossible. I would be very
much interested in learning more about how our existing quantum resource theories can
be made to fit with these new finding (or it’s possible there are no existing contradictions).
Even viewing this process of embezzlement from a resource theoretic perspective would
be very interesting.

As a more direct application of this paper, I would be interested in finding out how the
two interacting states in the embezzlement process exchange coherence and entanglement
using methods derived in Kendall and Kempf [2020]. The fact that there is a catalyst state
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that remains unchanged (physically undetectable at least) through the protocol I would
expect that some of it’s entanglement is siphoned off and “given” to embezzling state.
That said of course it would be important to prove or disprove these conjectures, and I
think the tools developed here could shed light on the process.

5.2 Quantum Error Correction

As we know, maintaining coherence in a quantum computer is extremely challenging.
Since some of the original work in Calderbank and Shor [1996], we have seen many new
methods and protocols for doing quantum error correction. It would be very interesting to
study some of these methods to see how measures of entanglement and coherence change
throughout some given circuits. I understand the circuit model of quantum computation
is quite different from that of the Hamiltonian model used in this work, but I believe there
are ways of translating between the two. As is most often the case, when we’re able to
understand a concept deeply, we can then build technologies harnessing it. Armed with a
better understanding the exchange of coherence and entanglement, hopefully we are a
step closer to taming decoherence.
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