
Advanced Quantum Theory Homework 3

Name: Nate Stemen (20906566) Due: Mon, Oct 5, 2020 11:59 AM
Email: nate.stemen@uwaterloo.ca Course: AMATH 673

Exercise 15
Show that for any arbitrary choice of complex numbers r, s the matrix-valued
functions x̂(t) and p̂(t) defined through Eqs. 3.51, 3.52 obey the equations of
motion at all time.

Solution. We first have to calculate the equation of motion besides the given p̂ = m ˙̂x(t).

˙̂p(t) =
d
dt

p̂ =
1
ih̄

[
p̂, Ĥ

]
=

1
ih̄

[
p̂,

mω2

2
x̂2
]

=
mω2

2ih̄

[
p̂, x̂2

]
=

mω2

2ih̄
(−2ih̄x̂)

= −mω2x̂ = −kx̂

Just like we remember from classical mechanics. Now we need to ensure our ansatz
works for this equation of motion.

˙̂p(t) = m ¨̂x = m
(

ξ̈a + ξ̈a†
)

= m
[(

−rω2 sin(ωt)− sω2 cos(ωt)
)

a +
(
−rω2 sin(ωt)− sω2 cos(ωt)

)
a†
]

= −mω2
[
(−r sin(ωt)− s cos(ωt))a + (−r sin(ωt)− s cos(ωt))a†

]
= −mω2

[
ξ(t)a + ξ(t)a†

]
= −mωx̂(t) = −kx̂(t)

Sweet.
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Exercise 16
Show that, again for any arbitrary choice of complex numbers r, s, the matrix-
valued functions x̂(t) and p̂(t) defined through Eqs. 3.51, 3.52 obey the hermiticity
conditions at all time.

Solution. Note: we are now using a star/asterisk to denote complex conjugate whereas
in the previous question we used an overline. Sorry for any confusion.

x̂† =
(

ξ(t)a + ξ∗(t)a†
)†

p̂† = m∗
(

ξ̇(t)a + ξ̇∗(t)a†
)†

= ξ∗(t)a† + ξ(t)a = x̂ = m
(

ξ̇∗(t)a† + ξ̇(t)a
)
= p̂

Here we’ve not actually had to use the ansatz ξ(t), and hence we have shown that the
position and momentum operators are hermitian for all r, s.
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Exercise 17
Find the equation that the complex numbers r, s have to obey so that the matrix-
valued functions x̂(t) and p̂(t) defined through Eqs. 3.51, 3.52 obey the canonical
commutation relations at all time. This equation for r, s is called the Wronskian
condition and it has many solutions. Give an example of a pair of complex
numbers r, s that obey the Wronskian condition and write down x̂(t) explicitly
with these values for r, s filled in.

Solution. This question is a computational doozie... We need to ensure [x̂, p̂] = ih̄.

[x̂, p̂] = m
(

ξa + ξ∗a†
)(

ξ̇a + ξ̇∗a†
)
− m

(
ξ̇a + ξ̇∗a†

)(
ξa + ξ∗a†

)
= m

[
ξ(t)ξ̇∗(t)− ξ̇(t)ξ∗(t)

]
= mω(sr∗ − rs∗)
= mω(a1 + ia1)(b1 − ib2)− (b1 + ib2)(a1 − ia2)

ih̄ = 2mωi[a2b1 − a1b2]

a2b1 − a1b2 =
h̄

2mω

From here we can let s = 0+ i h̄
2mω and r = 1+ i666 and we can write down our position

operator.

x̂(t) =
(
(1 + i666) sin(ωt) + i

h̄
2mω

cos(ωt)
)

a

+

(
(1 − i666) sin(ωt)− i

h̄
2mω

cos(ωt)
)

a†
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Exercise 18
Use Eqs. 3.51, 3.52 to express the Hamiltonian in terms of functions and the
operators a, a†. There should be terms proportional to a2, to (a†)2, aa† and a†a.

Solution.

Ĥ =
p̂2

2m
+

mω2

2
x̂2

=

[
m
2

ξ̇2 +
mω2

2
ξ2
]

a2 +

[
m
2

ξ̇∗
2
+

mω2

2
ξ∗

2
]

a†2

+

[
m
2

ξ̇ ξ̇∗ +
mω2

2
ξξ∗

]
aa† +

[
m
2

ξ̇ ξ̇∗ +
mω2

2
ξξ∗

]
a†a
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Exercise 19
It turns out that it is possible to choose the coefficients r and s so that the terms
in the Hamiltonian which are proportional to a2 and (a†)2 drop out. Find the
condition which the equation that r and s have to obey for this to happen. Choose
a pair of complex numbers r, s such that the Hamiltonian simplifies this way, and
of course such that the Wronskian condition is obeyed. Write down Ĥ(t) as an
explicit matrix for this choice of r, s. It should be a diagonal matrix.

Solution. We can expand the a2 and a†2 to get the following condtions on r and s.

m
2

ξ̇2 +
mω2

2
ξ2 =

mω2

2

(
r2 + s2

)
=⇒ r2 = −s2

m
2

ξ̇∗
2
+

mω2

2
ξ∗

2
=

mω2

2

(
r∗

2
+ s∗

2
)

=⇒ r∗
2
= −s∗

2

Turns out these equations are equivalent (no duh, you might say). So we have to satisfy
the following three conditions simultaneously where r = a1 + ia2 and s = b1 + ib2.

a2b1 − a1b2 =
h̄

2mω

b2
1 − b2

2 = a2
2 − a2

1

b1b2 = −a1a2

The following values are a quadruple that satisfy the above equations.

a1 =

(
−h̄

4mω

) 1
2

b1 = −
(

−h̄
4mω

) 1
2

a2 =

(
−h̄

4mω

) 1
2

b2 =

(
−h̄

4mω

) 1
2

The Hamiltonian would then read

Ĥ = − h̄ω

2


1

3
5

7
. . .


where the off diagonal elements are 0.
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Exercise 20
Give a counter example for Eq. 3.67. To this end, write out Eq. 3.67 explicitly, i.e.,
in matrix form, for the case f̂ (x̂(t), p̂(t)) = x̂2. Then choose a suitable normalized
ψ so that Eq. 3.67 is seen to be violated. (It is not difficult to find such a ψ, almost
every one will do.)

Solution. If f̂ (x̂, p̂) = x̂2, then the expectation f̄ is as follows.

f̄ =
∞

∑
n,m=1

ψ∗
n

[
x̂2
]

n,m
ψm

On the other hand if we look at f (x, p) then we have the following.

f (x, p) = (x)2 =

[
∞

∑
n,m=1

ψ∗
n x̂n,mψm

]2

Now let ψ =
[
1 0 · · ·

]⊺ (all zeros except for the first element). Then we have f̄ =[
x̂2]

0,0 and f (x, p) = (x̂0,0)
2. Because [x̂2]0,0 = x0kxk0 where the sum over k is implied,

this is not in general equal to x2
0,0. Even given the fact that x̂ is hermitian, and hence

x0k = x∗k0 so [x̂2]0,0 = x2
0k it’s still not generally true.
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Exercise 21
Verify that ψ of Eq. 3.61 is normalized. For this choice of ψ, calculate explicitly the
expectation values x̄(t), p̄(t) as well as the uncertainties in those predictions, i.e.,
the standard deviations ∆x(t) and∆p(t) for the free particle. Your results should
show that neither the position nor the momentum are predicted with certainty
at any time, not even at the initial time t0. The fact that ∆x(t) grows in time
expresses that a momentum uncertainty over time leads to increasing position
uncertainty. ∆p(t) remains constant in time, expressing that the momentum of a
free particle, no matterwhat value it has, remains unchanged.

Solution. First, the fact that ψ is normalized:

1
5
[
4 −3i 0 · · ·

]1
5


4
3i
0
...

 =
1

25
(16 + 9) = 1
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Exercise 22
Spell out the step of the second equality in Eq. 3.68.

Solution. Pretty much all of the of the manipulations that follow are because of the
fact that the expectation value of a constant is just that constant. So QQ = Q2

.

(∆Q)2 =
(
Q − Q

)2

= Q2 + Q2 − 2QQ

= Q2 + Q2 − 2QQ

= Q2 + Q2 − 2QQ

= Q2 − Q2
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Exercise 23
Verify that H∗ is a complex vector space.

Solution. Define the addition of “bra” vectors as follows.

(⟨ϕ|+ ⟨ψ|) |ξ⟩ 7→ ⟨ϕ|ξ⟩+ ⟨ψ|ξ⟩

With this defined, we have to show it forms an abelian group. First, closure. For
⟨ϕ| , ⟨ψ| ∈ H there sum is also in H because the sum of two complex numbers is
again a complex number. Secon, associativity. This follows from the fact that the
addition of complex numbers is associative. Third, identity. Let the identity element
be ⟨0| which is the linear functional that sends everything to 0. With this it’s clear
⟨ϕ|+ ⟨0| = ⟨0|+ ⟨ϕ| = ⟨ϕ|. Fourth, inverses. The inverse of ⟨ϕ| will be defined by
− ⟨ϕ|. We then have (⟨ϕ|+ (− ⟨ϕ|)) |ξ⟩ = ⟨ϕ|ξ⟩ − ⟨ϕ|ξ⟩ = 0 which is equivalent to
the action of the 0 bra vector. Lastly, commutativity. This follows easily from the
commutativity of complex number addition.

Now we need to define scalar multiplication. Define the action as follows.

(α ⟨ϕ|) |ψ⟩ = α ⟨ϕ|ψ⟩

Now we need to verify some properties about the interaction of scalar multiplication
and bra vector addition.

((α + β) ⟨ϕ|) |ψ⟩ = (α + β) ⟨ϕ|ψ⟩
= α ⟨ϕ|ψ⟩+ β ⟨ϕ|ψ⟩
= (α ⟨ϕ|) |ψ⟩+ (β ⟨ϕ|) |ψ⟩

(α(⟨ϕ|+ ⟨ψ|)) |ξ⟩ = α ⟨ϕ|ξ⟩+ α ⟨ψ|ξ⟩
((αβ) ⟨ϕ|) |ψ⟩ = (αβ) ⟨ϕ|ψ⟩

= α(β ⟨ϕ|ψ⟩)
(1 ⟨ϕ|) |ξ⟩ = 1 ⟨ϕ|ξ⟩

= ⟨ϕ|ξ⟩

With all of these properties satisfied we can conclude that H∗ is indeed a vector space.
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