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Name: Nate Stemen (20906566) Due: Mon, Nov 2, 2020 11:50 AM
Email: nate.stemen@uwaterloo.ca Course: AMATH 673

[ Exercise 2 ] _________________________________________________________________ .
: Verify the canonical commutation relation in the position representation, i.e., verify |
 that, for all (differentiable) wave functions {(x):

(P2)-9(x) = p-(2.9(x)) = p-(x¢(x)) = —ih%(xw(x)) = =i (p(x) + x¢'(x))
(ifr).ip(x) = inyp(x)
Putting these together (with the appropriate signs) yields
ity (x) + ih ((x) + xp!(x)) — ihp(x)
= — ihxy'(x) + ihyp(x) + ihxy'(x) — ihY(x)
=0

as desired. I hope you like my colors.
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[ Exercise 3 ] ................................................................

' Derive the action of £ and p on momentum wave functions, i.e., derive the short '
. hand notation £.¢(p) =?¢¥(p) and p.P(p) =?¢¥(p) analogously to how we derived |

i the short hand notation for the position representation.

Solution. Lets start with the simple one p.{(p). Begin by letting |¢) = p |¢).

¢(p) = (plo) = (pI P l¥) = p(pl¥) = rP(p)

With this we can conclude p.9(p) = pP(p).
Now to the slightly more challenging £.¢(p). We'll first prove a little lemma we’ll
use in our computation down the line.

Lemma.

vl 21p') —ihdip&p’—m

Proof. Let’s do two insertions of the identity in the position basis which
we know how to handle a little bit better.

(pI21p') = (p|121[p’)
= /11{2 dxdx’ (p|x) (x| £ |x") (x'|p")

—ipx/h eip/x//h
= dxdx' & x6(x — x’
R2 v 27mth [ ( )] 27th

_ 1 ix(p'—p)/h
- 27th / dx xe

271/ dx

Great, so now let’s get back to the question at hand. Let |¢) = % |i). Then we have

F(p) = (ple) = (p| 2 |9)
= [ dp' (pl21p) (1)
— /de’ ihdipé(p —p)Pp') = lhd%ll’(r’)

With this we can conclude £.9(p) = ihdipgﬁ( p), or perhaps if we're being technical
2(p) = ih%tﬁ( p). That has a nice symmetry! with p acting in position space.

!Presumably coming from the fact that x and p are Fourier transforms of each other?
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[ Exercise 1 1 ................................................................
\ Explam Eq. 6.5 using a sketch of the plot of a function and a partitioning of the |

' mtegratlon interval. :

...........................................................................

Solution. Using the following plot, we can calculate the Riemann-Stieltjes integral of
the function in blue with respect the Heaviside function 6(x). Because 0(x) is the same

1+ o
[ J
0+ o)
a Xi  x; 0 Xit+1 Xii1 Xit2 b

everywhere except near zero, all the terms in our summation cancel out and we are left
with the following equation.

b
| £a)d6() = tim £(%)[0(xi1) — 6(x)] = lim (%)
a e—0 e—0
As ¢ goes to 0, X; is forced to approach zero and hence in the limit | ab f(x)df(x) = f(0).

It’s worth noting that if one of the interval points lands right on the origin x; = 0,
then the picture changes slightly because we have two terms.

[ FGa00x) = tim £ [0(xr) — 0] = lim 2f(x110) + 2 (5)

In the limit of small ¢, this approaches the average of the points just left and right of 0,
which is of course (for continuous functions) f(0).
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[ Exercise 2 ] .................................................................
| Plot an integrator function m(x) which integrates over the intervals [3, 6] and [9, 11]
+ and sums over the values of the integrand at the points x = 5 and x = 6.

Solution. The following function m(x) will pluck out the values at 5 and 6 so we can
add them. I've only defined the function on [3,6] U [9, 11] because that’s seems like the
easiest thing to do.

m(x)
3| .
2 e— O
1 — 4 —
0 3 5 6 9 11 x
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[ Exercise 1 ]. ................................................................ .
. There are indications from studies of quantum gravity, that the uncertainty relation |

E between positions and momenta acquire corrections due to gravity effects and should !

' be of the form: AxAp > (1 + B(Ap)? +...), where B is expected to be a small |
' positive number. Show that this type of uncertamty relation arises if the canonical !
| commutation relation is modified to read[%, p] = if(1 + Bp?). Sketch the modified |

E uncertainty relation AxAp > 1(1 + B(Ap)?) in the Ap versus Ax plane. Bonus: Show !
; that this resulting uncertainty relation implies that the uncertainty in position can |

:l never be smaller than Axmin, = f11/B. :

...........................................................................

Solution. Let’s start with the general uncertainty principle.

AFAg > 5| (IIF, )l

We can now replace f and g with x and p respectively to obtain the new uncertainty
principle.

Mdp > 5| (plin(1 + Bp2)9)
= 2l wly) + B wl?ly)]
)
= §<1 + B(Ap)? + ﬁ?z> (using the definition of Ap)
Or, written slightly differently we have AxAp > L(1+ B(Ap)2+...).

Now if write this as xy = %(1 + By?), it’s maybe slightly easy to see it’s a hyperbola.
To find the minimum value for x = Ax, let’s first solve for y.

+ /x4
2 1 ¥ hzﬁZ B

2

——xy+—-=0 = y= =—=x/5=—=
R T 2 ng~ \| g B
From here we can take the derivative of y and find where if evaluates to infinity. This is
the point we’re looking for.

2x
1 hz_ﬁz . _1
y' oo hﬁ 1 np2 B

h2/32 B

/

Yy

y' —o0

Where we've arrived at the condition Axp, = f11/B. Putting the two together we have
AxminAp = 1i\/B ﬁ = h which indeed satisfies the uncertainty principle. Nice.

Okay, to get onto the plotting. I couldn’t figure out how to shade the region “inside”
(to the right of the blue line), but that’s the allowed region. Here we plot the portion of
the hyperbola where both Ax and Ap are positive because those are the only physical
values.
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Ap

5+

0 AXpin = h\/B Ax
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[ Exercise 2 ]. ................................................................
+ Ultimately, every clock is a quantum system, with the clock’s pointer or dlsplay .
: consisting of one or more observables of the system. Even small quantum systems :
: such as a nucleus, an electron, atom or molecule have been made to serve as clocks. |
' Assume now that you want to use a small system, such as a molecule, as a clock by |
! observmg how one of its observables changes over time. Assume that your quantum !
. clock possess a discrete and bounded energy spectrum E; < E; < E3 < ... < Epax |
' with Emax — E; = 1eV (1eV=1 electronvolt) which is a typical energy scale in atomic !

. phy51cs
(a) Calculate the maximum uncertainty in energy, AE that your quantum clock can
possess.

' (b) Calculate the maximally achievable accuracy for such a clock. Le., what is the |
l

shortest time interval (in units of seconds) within which any observable prop-|
erty of the clock could change its expectation value by a standard deviation?

Solution. ?? The maximum energy uncertainty would be the highest energy minus the
lowest energy. I've gotta be missing something for this question... AE = Epax — E1 =

leV.
??

1 h 1 7 658x1071%V. s 16
> - = = = . n
A= 3H? T Teva 26V 3.29x1077s




