
Advanced Quantum Theory Homework 5

Name: Nate Stemen (20906566) Due: Mon, Nov 2, 2020 11:50 AM
Email: nate.stemen@uwaterloo.ca Course: AMATH 673

Exercise 2
Verify the canonical commutation relation in the position representation, i.e., verify
that, for all (differentiable) wave functions ψ(x):

(x̂ p̂ − p̂x̂ − ih̄).ψ(x) = 0

Solution. Let’s first evaluate each term separately.

(x̂ p̂).ψ(x) = x̂.( p̂.ψ(x)) = x̂.
(
−ih̄

d
dx

ψ(x)
)
= −ih̄xψ′(x)

( p̂x̂).ψ(x) = p̂.(x̂.ψ(x)) = p̂.(xψ(x)) = −ih̄
d

dx
(xψ(x)) = −ih̄

(
ψ(x) + xψ′(x)

)
(ih̄).ψ(x) = ih̄ψ(x)

Putting these together (with the appropriate signs) yields

−ih̄xψ′(x) + ih̄
(
ψ(x) + xψ′(x)

)
− ih̄ψ(x)

= − ih̄xψ′(x) + ih̄ψ(x) + ih̄xψ′(x) − ih̄ψ(x)

= 0

as desired. I hope you like my colors.
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Exercise 3
Derive the action of x̂ and p̂ on momentum wave functions, i.e., derive the short
hand notation x̂.ψ̃(p) =?ψ̃(p) and p̂.ψ̃(p) =?ψ̃(p) analogously to how we derived
the short hand notation for the position representation.

Solution. Lets start with the simple one p̂.ψ̃(p). Begin by letting |ϕ⟩ = p̂ |ψ⟩.

ϕ̃(p) = ⟨p|ϕ⟩ = ⟨p| p̂ |ψ⟩ = p ⟨p|ψ⟩ = pψ̃(p)

With this we can conclude p̂.ψ̃(p) = pψ̃(p).
Now to the slightly more challenging x̂.ψ̃(p). We’ll first prove a little lemma we’ll

use in our computation down the line.

Lemma.
⟨p| x̂ |p′⟩ = ih̄

d
dp

δ(p′ − p)

Proof. Let’s do two insertions of the identity in the position basis which
we know how to handle a little bit better.

⟨p| x̂ |p′⟩ = ⟨p| 1x̂1 |p′⟩

=
∫

R2
dx dx′ ⟨p|x⟩ ⟨x| x̂ |x′⟩ ⟨x′|p′⟩

=
∫

R2
dx dx′

e−ipx/h̄
√

2πh̄

[
xδ(x − x′)

]eip′x′/h̄
√

2πh̄

=
1

2πh̄

∫
R

dx xeix(p′−p)/h̄

=
i

2π

∫
R

dx
d

dp
eix(p′−p)/h̄

=
i

2π

d
dp

∫
R

dx eix(p′−p)/h̄

=
i

2π

d
dp

[
−2πh̄δ(p′ − p)

]
= ih̄

d
dp

δ(p − p′)

Great, so now let’s get back to the question at hand. Let |ϕ⟩ = x̂ |ψ⟩. Then we have

ϕ̃(p) = ⟨p|ϕ⟩ = ⟨p| x̂ |ψ⟩

=
∫

R
dp′ ⟨p| x̂ |p′⟩ ⟨p′|ψ⟩

=
∫

R
dp′ ih̄

d
dp

δ(p − p′)ψ̃(p′) = ih̄
d

dp
ψ̃(p)

With this we can conclude x̂.ψ̃(p) = ih̄ d
dp ψ̃(p), or perhaps if we’re being technical

x̂.ψ̃(p) = ih̄ ∂
∂p ψ̃(p). That has a nice symmetry1 with p̂ acting in position space.

1Presumably coming from the fact that x and p are Fourier transforms of each other?
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Exercise 1
Explain Eq. 6.5 using a sketch of the plot of a function and a partitioning of the
integration interval.

Solution. Using the following plot, we can calculate the Riemann-Stieltjes integral of
the function in blue with respect the Heaviside function θ(x). Because θ(x) is the same

a xi xi 0 xi+1 xi+1 xi+2 b

0

1

everywhere except near zero, all the terms in our summation cancel out and we are left
with the following equation.∫ b

a
f (x)dθ(x) = lim

ε→0
f (xi)[θ(xi+1)− θ(xi)] = lim

ε→0
f (xi)

As ε goes to 0, xi is forced to approach zero and hence in the limit
∫ b

a f (x)dθ(x) = f (0).
It’s worth noting that if one of the interval points lands right on the origin xj = 0,

then the picture changes slightly because we have two terms.∫ b

a
f (x)dθ(x) = lim

ε→0
f (xi)[θ(xi+1)− θ(xi)] = lim

ε→0

1
2

f (xj+1) +
1
2

f (xj)

In the limit of small ε, this approaches the average of the points just left and right of 0,
which is of course (for continuous functions) f (0).
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Exercise 2
Plot an integrator function m(x) which integrates over the intervals [3, 6] and [9, 11]
and sums over the values of the integrand at the points x = 5 and x = 6.

Solution. The following function m(x) will pluck out the values at 5 and 6 so we can
add them. I’ve only defined the function on [3, 6] ∪ [9, 11] because that’s seems like the
easiest thing to do.

0 3 5 6 9 11

1

2

3

x

m(x)
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Exercise 1
There are indications from studies of quantum gravity, that the uncertainty relation
between positions and momenta acquire corrections due to gravity effects and should
be of the form: ∆x∆p ≥ h̄

2 (1 + β(∆p)2 + . . .), where β is expected to be a small
positive number. Show that this type of uncertainty relation arises if the canonical
commutation relation is modified to read[x̂, p̂] = ih̄(1 + β p̂2). Sketch the modified
uncertainty relation ∆x∆p ≥ h̄

2 (1 + β(∆p)2) in the ∆p versus ∆x plane. Bonus: Show
that this resulting uncertainty relation implies that the uncertainty in position can
never be smaller than ∆xmin = h̄

√
β.

Solution. Let’s start with the general uncertainty principle.

∆ f ∆g ≥ 1
2
| ⟨ψ|[ f , g]|ψ⟩|

We can now replace f and g with x and p respectively to obtain the new uncertainty
principle.

∆x∆p ≥ 1
2

∣∣∣ ⟨ψ|ih̄(1 + βp2)|ψ⟩
∣∣∣

=
h̄
2

∣∣∣⟨ψ|ψ⟩+ β ⟨ψ|p2|ψ⟩
∣∣∣

=
h̄
2

(
1 + β p2

)
=

h̄
2

(
1 + β(∆p)2 + β p2

)
(using the definition of ∆p)

Or, written slightly differently we have ∆x∆p ≥ h̄
2

(
1 + β(∆p)2 + . . .

)
.

Now if write this as xy = h̄
2 (1 + βy2), it’s maybe slightly easy to see it’s a hyperbola.

To find the minimum value for x = ∆x, let’s first solve for y.

y2 − 2
h̄β

xy +
1
β
= 0 =⇒ y =

2
h̄β x ±

√
4

h̄2β2 x2 − 4
β

2
=

x
h̄β

±
√

x2

h̄2β2
− 1

β

From here we can take the derivative of y and find where if evaluates to infinity. This is
the point we’re looking for.

y′
∣∣∣∣
y′→∞

=
1

h̄β
+

2x
h̄2β2√
x2

h̄2β2 − 1
β

∣∣∣∣∣∣∣∣
y′→∞

=⇒ x2

h̄2β2
=

1
β

Where we’ve arrived at the condition ∆xmin = h̄
√

β. Putting the two together we have
∆xmin∆p = h̄

√
β 1√

β
= h̄ which indeed satisfies the uncertainty principle. Nice.

Okay, to get onto the plotting. I couldn’t figure out how to shade the region “inside”
(to the right of the blue line), but that’s the allowed region. Here we plot the portion of
the hyperbola where both ∆x and ∆p are positive because those are the only physical
values.
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0 ∆xmin = h̄
√

β

0

1√
β

∆x

∆
p
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Exercise 2
Ultimately, every clock is a quantum system, with the clock’s pointer or display
consisting of one or more observables of the system. Even small quantum systems
such as a nucleus, an electron, atom or molecule have been made to serve as clocks.
Assume now that you want to use a small system, such as a molecule, as a clock by
observing how one of its observables changes over time. Assume that your quantum
clock possess a discrete and bounded energy spectrum E1 ≤ E2 ≤ E3 ≤ . . . ≤ Emax
with Emax − E1 = 1eV (1eV=1 electronvolt) which is a typical energy scale in atomic
physics.

(a) Calculate the maximum uncertainty in energy, ∆E that your quantum clock can
possess.

(b) Calculate the maximally achievable accuracy for such a clock. I.e., what is the
shortest time interval (in units of seconds) within which any observable prop-
erty of the clock could change its expectation value by a standard deviation?

Solution. ?? The maximum energy uncertainty would be the highest energy minus the
lowest energy. I’ve gotta be missing something for this question. . . ∆E = Emax − E1 =
1eV.

??

∆t ≥ 1
∆H

h̄
2
=

1
1eV

h̄
2
=

6.58 × 10−16eV · s
2eV

= 3.29 × 10−16 s
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