Advanced Quantum Theory Homework 6

Name: Nate Stemen (20906566) Email: nate.stemen@uwaterloo.ca Due: Mon, Nov 16, 2020 11:59 AM Course: AMATH 673

Exercise 1

Assume that $\hat{f}(t)$ is any observable which does not explicitly depend on time (i.e., which is a polynomial or a well-behaved power series in the position and momentum operators with constant coefficients). Show that the time evolution of any such $\hat{f}(t)$ is given by:

$$\hat{f}(t) = \hat{U}^{\dagger}(t)\hat{f}(t_0)\hat{U}(t)$$

Solution. Let $P_n(\hat{x}, \hat{p})$ denote a single polynomial term of degree *n* in the \hat{x} and \hat{p} 's. For example $P_n(\hat{x}, \hat{p})$ could be \hat{x}^n , or $\hat{x}^{n/2}\hat{p}^{n/2}$ or $\hat{x}\hat{p}\hat{x}\cdots\hat{x}\hat{p}$ where $\hat{x}\hat{p}$ is repeated n/2 times. With this notation we can then write our function \hat{f} as

$$\hat{f}(t) = \sum_{n} \alpha_{n} P_{n}(\hat{x}(t), \hat{p}(t))$$

Now before showing the time evolution of \hat{f} is given as above we will show the time evolution of the individual terms is given by

$$P_n(\hat{x}(t), \hat{p}(t)) = \hat{U}^{\dagger}(t) P_n(\hat{x}(t_0), \hat{p}(t_0)) \hat{U}(t).$$
(1)

We'll follow the tried and tested method of inserting identities (but really $\hat{U}^{\dagger}\hat{U}$) between every term. This is the part I don't know how to show in symbols. It makes complete sense to me, and all of the examples I provided above work out perfectly, but I don't know how to write a general term of P_n out so that I can insert identities between the terms. Maybe something like $P_n = \prod_{p_i} \hat{v}^{p_i}$ where $\hat{v} \in {\hat{x}, \hat{p}}$ and $\sum_i p_i = n$. Then I think that would work because the \hat{x} and the \hat{p} 's behave the same way when doing this. So I'll take that **??** works. Now let's conjugate $\hat{f}(t_0)$.

$$\hat{U}^{\dagger}(t)\hat{f}(t_{0})\hat{U}(t) = \hat{U}^{\dagger}(t) \left[\sum_{n} \alpha_{n} P_{n}(\hat{x}(t_{0}), \hat{p}(t_{0}))\right] \hat{U}(t)$$

$$= \sum_{n} \alpha_{n} \hat{U}^{\dagger}(t) P_{n}(\hat{x}(t_{0}), \hat{p}(t_{0})) \hat{U}(t)$$

$$= \sum_{n} \alpha_{n} P_{n}(\hat{x}(t), \hat{p}(t))$$

$$= \hat{f}(t)$$

Exercise 2)	
Bonus q	uestion:	
L)

Solution. Sorry, super busy this week so no extra time unfortunately \odot .

Solution. **??** Let's start by conjugating the commutator at the initial time *t*₀.

$$\begin{split} \mathbf{i}\hbar &= \hat{U}^{\dagger}(t)[\hat{x}(t_{0}),\hat{p}(t_{0})]\hat{U}(t) \\ &= \hat{U}^{\dagger}(t)\hat{x}(t_{0})\hat{p}(t_{0})\hat{U}(t) - \hat{U}^{\dagger}(t)\hat{p}(t_{0})\hat{x}(t_{0})\hat{U}(t) \\ &= \hat{U}^{\dagger}(t)\hat{x}(t_{0})\hat{U}(t)\hat{U}^{\dagger}(t)\hat{p}(t_{0})\hat{U}(t) - \hat{U}^{\dagger}(t)\hat{p}(t_{0})\hat{U}(t)\hat{U}^{\dagger}(t)\hat{x}(t_{0})\hat{U}(t) \\ &= \hat{x}(t)\hat{p}(t) - \hat{p}(t)\hat{x}(t) \\ &= [\hat{x}(t),\hat{p}(t)] \end{split}$$

Feeling thankful for copy and paste right now, my best buds.

?? In part ?? we demonstrated that when we conjugate the commutator of $\hat{x}(t_0)$ and $\hat{p}(t_0)$ it evolves to the commutator of $\hat{x}(t)$ and $\hat{p}(t)$. So to answer this part of the question we will show $i\hbar(1 + \beta\hat{p}(t_0)^2) \xrightarrow{\hat{U}^{\dagger}\star\hat{U}} i\hbar(1 + \beta\hat{p}(t)^2)$ where I've used \bigstar to denote the thing being conjugated.

$$\begin{split} \hat{U}^{\dagger}(t) \mathbf{i}\hbar(1+\beta\hat{p}(t_{0})^{2})\hat{U}(t) &= \mathbf{i}\hbar\Big[\hat{U}^{\dagger}(t)\hat{U}(t)+\beta\hat{U}^{\dagger}(t)\hat{p}(t_{0})\hat{p}(t_{0})\hat{U}(t)\Big] \\ &= \mathbf{i}\hbar\Big[\mathbbm{1}+\beta\hat{U}^{\dagger}(t)\hat{p}(t_{0})\hat{U}(t)\hat{U}^{\dagger}(t)\hat{p}(t_{0})\hat{U}(t)\Big] \\ &= \mathbf{i}\hbar\Big[\mathbbm{1}+\beta\hat{p}(t)^{2}\Big] \end{split}$$

Thus we conclude even a modified commutation relation like the above is conserved with unitary time evolution. Quantum gravity solved.

Exercise 4	
Conside	r a system with a Hamiltonian that has no explicit time dependence.
Assume	that we prepare the system in a state so that its energy at the initial time
t_0 is know	wn precisely.

- (a) Show that the energy of the system will stay sharp, i.e., without uncertainty, at that value.
- (b) Consider now the specific example of a harmonic oscillator system. Its positions and momenta evolve according to Eqs.7.26. Given the time-energy uncertainty relations, what more can you conclude for the time-evolution of $\overline{x}(t)$ and $\overline{p}(t)$ if the system is in a state with vanishing uncertainty in the energy?

Solution. **??** In the next question we show that when \hat{H} has no explicit time dependence, then it commutes with the time evolution operator $\hat{U}(t)$. Using this fact we have

$$\hat{H}(t) = \hat{U}^{\dagger}(t)\hat{H}(t_0)\hat{U}(t) = \hat{H}(t_0)\hat{U}^{\dagger}(t)\hat{U}(t) = \hat{H}(t_0).$$

Thus if $(\Delta \hat{H}(t))^2 = \langle \hat{H}^2(t) \rangle - \langle \hat{H}(t) \rangle^2$ then inserting the above clearly shows the $(\Delta \hat{H}(t_0))^2$ is the same.

?? Given $\Delta E = 0$, then Δt must go infinity, and hence the expectation values $\overline{x}(t)$ and $\overline{p}(t)$ will follow the same patterns for all time, until something disturbs the system. Dang disturbances.

Exercise 5

Eq.8.37 shows that, in general, $\hat{H} \neq \hat{H}_S$ because in general the Heisenberg Hamiltonian does not commute with the time evolution operator. And this is because time-dependent Heisenberg Hamiltonians generally don't even commute with themselves at different times. Show that if the Heisenberg Hamiltonian \hat{H} does not explicitly depend on time (i.e., if it is a polynomial in the \hat{x} and \hat{p} with time-independent coefficients, i.e., if we do not introduce an explicit time-dependence manually) then it coincides with the Schrödinger Hamiltonian.

Solution. When \hat{H} has no time dependence then \hat{U} is defined as

$$\hat{U}(t) \coloneqq \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{t-t_0}{\mathrm{i}\hbar}\right)^n \hat{H}^n.$$

We'll now show that this time evolution operator commutes with the Heisenberg Hamiltonian.

$$\hat{U}(t)\hat{H} = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{t-t_0}{\mathrm{i}\hbar}\right)^n \hat{H}^{n+1} = \hat{H} \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{t-t_0}{\mathrm{i}\hbar}\right)^n \hat{H}^n = \hat{H}\hat{U}(t)$$

With this let's take a look at what the Schrödinger Hamiltonian looks like.

$$\hat{H}_S \coloneqq \hat{U}(t)\hat{H}\hat{U}^{\dagger}(t) = \hat{H}\hat{U}(t)\hat{U}^{\dagger}(t) = \hat{H}$$

Thus we've shown when either the Heisenberg/Schrödinger Hamiltonian has no explicit time dependence, then they are equal.

Exercise 6

Assuming that \hat{f} is an observable that has no explicit time dependence (i.e., that depends on time only through the operators $\hat{x}(t)$ and $\hat{p}(t)$), show that the following equation holds true in the Schrödinger picture and in the Heisenberg picture:

$$\mathrm{i}\hbarrac{\mathrm{d}}{\mathrm{d}t}\langle\psi|\hat{f}|\psi
angle=\langle\psi|[\hat{f},\hat{H}]|\psi
angle.$$

Solution. Let's first do the Heisenberg picture where the states $|\psi\rangle$ are frozen in time and hence have no time dependence.

$$\begin{split} \mathrm{i}\hbar\frac{\mathrm{d}}{\mathrm{d}t} \langle \psi | \hat{f} | \psi \rangle &= \mathrm{i}\hbar \langle \psi | \hat{f} | \psi \rangle \\ &= \mathrm{i}\hbar\frac{\mathrm{d}}{\mathrm{d}t} \langle \psi | \{\hat{f}, \hat{H}\} + \partial_t f | \psi \rangle \qquad (\text{Hamilton's equation}) \\ &= \frac{\mathrm{d}}{\mathrm{d}t} \langle \psi | [\hat{f}, \hat{H}] | \psi \rangle \qquad (\text{by } \{\hat{f}, \hat{H}\} = \frac{1}{\mathrm{i}\hbar} [\hat{f}, \hat{H}] \text{ and } \partial_t f = 0) \end{split}$$

Now the Schrödinger picture. Here we will use $i\hbar \frac{d}{dt} |\psi(t)\rangle = \hat{U}(t)\hat{H}(t)\hat{U}^{\dagger}(t) |\psi(t)\rangle$ in the derivation.

$$\begin{split} \mathrm{i}\hbar\frac{\mathrm{d}}{\mathrm{d}t} \langle \psi|\hat{f}|\psi\rangle &= \mathrm{i}\hbar \left\langle \dot{\psi}(t)|\hat{f}|\psi(t)\right\rangle + \mathrm{i}\hbar \left\langle \psi(t)|\hat{f}|\dot{\psi}(t)\right\rangle \\ &= -\left\langle \psi(t)|\hat{U}(t)\hat{H}(t)\hat{U}^{\dagger}(t)\hat{f}|\psi(t)\right\rangle + \left\langle \psi(t)|\hat{f}\hat{U}(t)\hat{H}(t)\hat{U}^{\dagger}(t)|\psi(t)\right\rangle \\ &= \left\langle \psi(t)|\hat{f}\hat{H}_{S}(t) - \hat{H}_{S}(t)\hat{f}|\psi(t)\right\rangle \\ &= \left\langle \psi|[\hat{f},\hat{H}_{S}]|\psi\right\rangle \end{split}$$

Thus we've shown the equation to hold true in both the Heisenberg and the Schrödinger picture. Cool stuff.

Exercise 7)	_
Show th	Show that $\hat{U}'(t)$ is unitary.	

Solution.

$$\left[\hat{U}'(t)\right]^{\dagger}\hat{U}'(t) = \left[\hat{U}^{(e)\dagger}(t)\hat{U}(t)\right]^{\dagger}\hat{U}^{(e)\dagger}(t)\hat{U}(t) = \hat{U}^{\dagger}(t)\hat{U}^{(e)}(t)\hat{U}^{(e)\dagger}(t)\hat{U}(t) = \mathbb{1}$$

Where we've used the fact that $\hat{U}^{(e)}(t)\hat{U}^{(e)\dagger}(t) = \mathbb{1}$ along with $\hat{U}^{\dagger}(t)\hat{U}(t) = \mathbb{1}$.