Advanced Quantum Theory Homework 6

Name: Nate Stemen (20906566)
Email: nate.stemen@uwaterloo.ca

Due: Mon, Nov 16, 2020 11:59 AM
Course: AMATH 673

Exercise 1

Assume that $\hat{f}(t)$ is any observable which does not explicitly depend on time (i.e., which is a polynomial or a well-behaved power series in the position and momentum operators with constant coefficients). Show that the time evolution of any such $\hat{f}(t)$ is given by:

$$
\hat{f}(t)=\hat{U}^{\dagger}(t) \hat{f}\left(t_{0}\right) \hat{U}(t)
$$

Solution. Let $P_{n}(\hat{x}, \hat{p})$ denote a single polynomial term of degree n in the \hat{x} and \hat{p}^{\prime} s. For example $P_{n}(\hat{x}, \hat{p})$ could be \hat{x}^{n}, or $\hat{x}^{n / 2} \hat{p}^{n / 2}$ or $\hat{x} \hat{p} \hat{x} \cdots \hat{x} \hat{p}$ where $\hat{x} \hat{p}$ is repeated $n / 2$ times. With this notation we can then write our function \hat{f} as

$$
\hat{f}(t)=\sum_{n} \alpha_{n} P_{n}(\hat{x}(t), \hat{p}(t))
$$

Now before showing the time evolution of \hat{f} is given as above we will show the time evolution of the individual terms is given by

$$
\begin{equation*}
P_{n}(\hat{x}(t), \hat{p}(t))=\hat{U}^{\dagger}(t) P_{n}\left(\hat{x}\left(t_{0}\right), \hat{p}\left(t_{0}\right)\right) \hat{U}(t) . \tag{1}
\end{equation*}
$$

We'll follow the tried and tested method of inserting identities (but really $\hat{U}^{+} \hat{U}$) between every term. This is the part I don't know how to show in symbols. It makes complete sense to me, and all of the examples I provided above work out perfectly, but I don't know how to write a general term of P_{n} out so that I can insert identities between the terms. Maybe something like $P_{n}=\prod_{p_{i}} \hat{v}^{p_{i}}$ where $\hat{v} \in\{\hat{x}, \hat{p}\}$ and $\sum_{i} p_{i}=n$. Then I think that would work because the \hat{x} and the \hat{p} 's behave the same way when doing this. So I'll take that ?? works. Now let's conjugate $\hat{f}\left(t_{0}\right)$.

$$
\begin{aligned}
\hat{U}^{\dagger}(t) \hat{f}\left(t_{0}\right) \hat{U}(t) & =\hat{U}^{\dagger}(t)\left[\sum_{n} \alpha_{n} P_{n}\left(\hat{x}\left(t_{0}\right), \hat{p}\left(t_{0}\right)\right)\right] \hat{U}(t) \\
& =\sum_{n} \alpha_{n} \hat{U}^{\dagger}(t) P_{n}\left(\hat{x}\left(t_{0}\right), \hat{p}\left(t_{0}\right)\right) \hat{U}(t) \\
& =\sum_{n} \alpha_{n} P_{n}(\hat{x}(t), \hat{p}(t)) \\
& =\hat{f}(t)
\end{aligned}
$$

Exercise 2

```
Bonus question:
```

Solution. Sorry, super busy this week so no extra time unfortunately ©.

Exercise 3

(a) Use the time evolution operator to prove that the canonical commutation relations are conserved, i.e., that, for example, $\left[\hat{x}\left(t_{0}\right), \hat{p}\left(t_{0}\right)\right]=\mathrm{i} \hbar$ implies $[\hat{x}(t), \hat{p}(t)]=\mathrm{i} \hbar$ for all t.
(b) Consider the possibility that (due to quantum gravity effects) at some time t_{0} the $x p$ commutation relations take the form $\left[\hat{x}\left(t_{0}\right), \hat{p}\left(t_{0}\right)\right]=\mathrm{i} \hbar\left(1+\beta \hat{p}\left(t_{0}\right)^{2}\right)$ (where β is a small positive constant). Assume that the Hamiltonian is self-adjoint, i.e., that the time evolution operator is still unitary. Will these commutation relations be conserved under the time evolution?

Solution. ?? Let's start by conjugating the commutator at the initial time t_{0}.

$$
\begin{aligned}
\mathrm{i} \hbar & =\hat{U}^{\dagger}(t)\left[\hat{x}\left(t_{0}\right), \hat{p}\left(t_{0}\right)\right] \hat{U}(t) \\
& =\hat{U}^{\dagger}(t) \hat{x}\left(t_{0}\right) \hat{p}\left(t_{0}\right) \hat{U}(t)-\hat{U}^{\dagger}(t) \hat{p}\left(t_{0}\right) \hat{x}\left(t_{0}\right) \hat{U}(t) \\
& =\hat{U}^{\dagger}(t) \hat{x}\left(t_{0}\right) \hat{U}(t) \hat{U}^{\dagger}(t) \hat{p}\left(t_{0}\right) \hat{U}(t)-\hat{U}^{\dagger}(t) \hat{p}\left(t_{0}\right) \hat{U}(t) \hat{U}^{\dagger}(t) \hat{x}\left(t_{0}\right) \hat{U}(t) \\
& =\hat{x}(t) \hat{p}(t)-\hat{p}(t) \hat{x}(t) \\
& =[\hat{x}(t), \hat{p}(t)]
\end{aligned}
$$

Feeling thankful for copy and paste right now, my best buds.
?? In part ?? we demonstrated that when we conjugate the commutator of $\hat{x}\left(t_{0}\right)$ and $\hat{p}\left(t_{0}\right)$ it evolves to the commutator of $\hat{x}(t)$ and $\hat{p}(t)$. So to answer this part of the question we will show $\mathrm{i} \hbar\left(1+\beta \hat{p}\left(t_{0}\right)^{2}\right) \xrightarrow{\hat{U}^{\dagger} \star \hat{U}} \mathrm{i} \hbar\left(1+\beta \hat{p}(t)^{2}\right)$ where I've used \star to denote the thing being conjugated.

$$
\begin{aligned}
\hat{U}^{\dagger}(t) \mathrm{i} \hbar\left(1+\beta \hat{p}\left(t_{0}\right)^{2}\right) \hat{U}(t) & =\mathrm{i} \hbar\left[\hat{U}^{\dagger}(t) \hat{U}(t)+\beta \hat{U}^{\dagger}(t) \hat{p}\left(t_{0}\right) \hat{p}\left(t_{0}\right) \hat{U}(t)\right] \\
& =\mathrm{i} \hbar\left[\mathbb{1}+\beta \hat{U}^{\dagger}(t) \hat{p}\left(t_{0}\right) \hat{U}(t) \hat{U}^{\dagger}(t) \hat{p}\left(t_{0}\right) \hat{U}(t)\right] \\
& =\mathrm{i} \hbar\left[\mathbb{1}+\beta \hat{p}(t)^{2}\right]
\end{aligned}
$$

Thus we conclude even a modified commutation relation like the above is conserved with unitary time evolution. Quantum gravity solved.

Exercise 4

Consider a system with a Hamiltonian that has no explicit time dependence. Assume that we prepare the system in a state so that its energy at the initial time t_{0} is known precisely.
(a) Show that the energy of the system will stay sharp, i.e., without uncertainty, at that value.
(b) Consider now the specific example of a harmonic oscillator system. Its positions and momenta evolve according to Eqs.7.26. Given the time-energy uncertainty relations, what more can you conclude for the time-evolution of $\bar{x}(t)$ and $\bar{p}(t)$ if the system is in a state with vanishing uncertainty in the energy?

Solution. ?? In the next question we show that when \hat{H} has no explicit time dependence, then it commutes with the time evolution operator $\hat{U}(t)$. Using this fact we have

$$
\hat{H}(t)=\hat{U}^{\dagger}(t) \hat{H}\left(t_{0}\right) \hat{U}(t)=\hat{H}\left(t_{0}\right) \hat{U}^{\dagger}(t) \hat{U}(t)=\hat{H}\left(t_{0}\right) .
$$

Thus if $(\Delta \hat{H}(t))^{2}=\left\langle\hat{H}^{2}(t)\right\rangle-\langle\hat{H}(t)\rangle^{2}$ then inserting the above clearly shows the $\left(\Delta \hat{H}\left(t_{0}\right)\right)^{2}$ is the same.
?? Given $\Delta E=0$, then Δt must go infinity, and hence the expectation values $\bar{x}(t)$ and $\bar{p}(t)$ will follow the same patterns for all time, until something disturbs the system. Dang disturbances.

Exercise 5

Eq. 8.37 shows that, in general, $\hat{H} \neq \hat{H}_{S}$ because in general the Heisenberg Hamiltonian does not commute with the time evolution operator. And this is because time-dependent Heisenberg Hamiltonians generally don't even commute with themselves at different times. Show that if the Heisenberg Hamiltonian \hat{H} does not explicitly depend on time (i.e., if it is a polynomial in the \hat{x} and \hat{p} with time-independent coefficients, i.e., if we do not introduce an explicit time-dependence manually) then it coincides with the Schrödinger Hamiltonian.

Solution. When \hat{H} has no time dependence then \hat{U} is defined as

$$
\hat{U}(t):=\sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{t-t_{0}}{\mathrm{i} \hbar}\right)^{n} \hat{H}^{n} .
$$

We'll now show that this time evolution operator commutes with the Heisenberg Hamiltonian.

$$
\hat{U}(t) \hat{H}=\sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{t-t_{0}}{\mathrm{i} \hbar}\right)^{n} \hat{H}^{n+1}=\hat{H} \sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{t-t_{0}}{\mathrm{i} \hbar}\right)^{n} \hat{H}^{n}=\hat{H} \hat{U}(t)
$$

With this let's take a look at what the Schrödinger Hamiltonian looks like.

$$
\hat{H}_{S}:=\hat{U}(t) \hat{H} \hat{U}^{\dagger}(t)=\hat{H} \hat{U}(t) \hat{U}^{\dagger}(t)=\hat{H}
$$

Thus we've shown when either the Heisenberg/Schrödinger Hamiltonian has no explicit time dependence, then they are equal.

Exercise 6

Assuming that \hat{f} is an observable that has no explicit time dependence (i.e., that depends on time only through the operators $\hat{x}(t)$ and $\hat{p}(t))$, show that the following equation holds true in the Schrödinger picture and in the Heisenberg picture:

$$
\mathrm{i} \hbar \frac{\mathrm{~d}}{\mathrm{~d} t}\langle\psi| \hat{f}|\psi\rangle=\langle\psi|[\hat{f}, \hat{H}]|\psi\rangle
$$

Solution. Let's first do the Heisenberg picture where the states $|\psi\rangle$ are frozen in time and hence have no time dependence.

$$
\begin{array}{rlr}
\mathrm{i} \hbar \frac{\mathrm{~d}}{\mathrm{~d} t}\langle\psi| \hat{f}|\psi\rangle & =\mathrm{i} \hbar\langle\psi| \hat{f}|\psi\rangle \\
& =\mathrm{i} \hbar \frac{\mathrm{~d}}{\mathrm{~d} t}\langle\psi|\{\hat{f}, \hat{H}\}+\partial_{t} f|\psi\rangle \quad \text { (Hamilton's equation) } \\
& =\frac{\mathrm{d}}{\mathrm{~d} t}\langle\psi|[\hat{f}, \hat{H}]|\psi\rangle \quad \text { (by }\{\hat{f}, \hat{H}\}=\frac{1}{\mathrm{i} \hbar}[\hat{f}, \hat{H}] \text { and } \partial_{t} f=0 \text {) }
\end{array}
$$

Now the Schrödinger picture. Here we will use i $\hbar \frac{\mathrm{d}}{\mathrm{d} t}|\psi(t)\rangle=\hat{U}(t) \hat{H}(t) \hat{U}^{\dagger}(t)|\psi(t)\rangle$ in the derivation.

$$
\begin{aligned}
\mathrm{i} \hbar \frac{\mathrm{~d}}{\mathrm{~d} t}\langle\psi| \hat{f}|\psi\rangle & =\mathrm{i} \hbar\langle\dot{\psi}(t)| \hat{f}|\psi(t)\rangle+\mathrm{i} \hbar\langle\psi(t)| \hat{f}|\dot{\psi}(t)\rangle \\
& =-\langle\psi(t)| \hat{U}(t) \hat{H}(t) \hat{U}^{\dagger}(t) \hat{f}|\psi(t)\rangle+\langle\psi(t)| \hat{f} \hat{U}(t) \hat{H}(t) \hat{U}^{+}(t)|\psi(t)\rangle \\
& =\langle\psi(t)| \hat{f} \hat{H}_{S}(t)-\hat{H}_{S}(t) \hat{f}|\psi(t)\rangle \\
& =\langle\psi|\left[\hat{f}, \hat{H}_{S}\right]|\psi\rangle
\end{aligned}
$$

Thus we've shown the equation to hold true in both the Heisenberg and the Schrödinger picture. Cool stuff.

Exercise 7

Show that $\hat{U}^{\prime}(t)$ is unitary.

Solution.

$$
\left[\hat{U}^{\prime}(t)\right]^{\dagger} \hat{U}^{\prime}(t)=\left[\hat{U}^{(e) \dagger}(t) \hat{U}(t)\right]^{\dagger} \hat{U}^{(e) \dagger}(t) \hat{U}(t)=\hat{U}^{\dagger}(t) \hat{U}^{(e)}(t) \hat{U}^{(e) \dagger}(t) \hat{U}(t)=\mathbb{1}
$$

Where we've used the fact that $\hat{U}^{(e)}(t) \hat{U}^{(e) \dagger}(t)=\mathbb{1}$ along with $\hat{U}^{\dagger}(t) \hat{U}(t)=\mathbb{1}$.

