Advanced Quantum Theory Homework 8

Name: Nate Stemen (20906566)
Email: nate.stemen@uwaterloo.ca

Due: Mon, Dec 7, 2020 11:59 AM
Course: AMATH 673

Exercise 1

Show that, conversely, as the temperature is driven to zero, $\beta \rightarrow \infty$, the density matrix tends towards the pure ground state of the Hamiltonian.

Solution. First note that we can write the density matrix as

$$
\hat{\rho}=\sum_{i=0}^{\infty} \frac{\mathrm{e}^{-\beta E_{i}}}{Z}\left|E_{i}\right\rangle\left\langle E_{i}\right| .
$$

where Z is the usual partition function. Now we can pull out the first term marked by the property that is has the lowest energy $E_{0} \leq E_{i}$ for all i.

$$
\begin{align*}
\hat{\rho} & =\mathrm{e}^{-\beta E_{0}} \sum_{i=0}^{\infty} \frac{\mathrm{e}^{-\beta\left(E_{i}-E_{0}\right)}}{\mathrm{Z}}\left|E_{i}\right\rangle\left\langle E_{i}\right| \\
& =\mathrm{e}^{-\beta E_{0}}\left[\frac{1}{Z}\left|E_{0}\right\rangle\left\langle E_{0}\right|+\sum_{i=1}^{\infty} \frac{\mathrm{e}^{-\beta\left(E_{i}-E_{0}\right)}}{Z}\left|E_{i}\right\rangle\left\langle E_{i}\right|\right] \tag{1}
\end{align*}
$$

Now let's take a look at the partition function when $\beta \rightarrow \infty$.

$$
\lim _{\beta \rightarrow \infty} Z=\lim _{\beta \rightarrow \infty} \mathrm{e}^{-\beta E_{0}}+\mathrm{e}^{-\beta E_{1}}+\mathrm{e}^{-\beta E_{2}}+\cdots \approx \mathrm{e}^{-\beta E_{0}}
$$

Where, I don't think this is very rigorous, but makes intuitive sense because every $E_{i} \geq E_{0}$, so they go to 0 faster. This allows us to cancel the terms in front of the $\left|E_{0}\right\rangle\left\langle E_{0}\right|$ term, and using the fact that $\lim _{\beta \rightarrow \infty} \mathrm{e}^{-\beta E}=0$ we can drop the second term of ??. This leaves us with

$$
\lim _{\beta \rightarrow \infty} \hat{\rho}=\left|E_{0}\right\rangle\left\langle E_{0}\right| .
$$

I think somewhat equivalently, one could scale all the energies so that $\tilde{E}_{0}=0$, and $\tilde{E}_{i}=E_{i}-E_{0}$. This maybe makes it more clear that the first term isn't going anywhere, but everything else will. I just wasn't sure if that's always valid to scale the energies like that.

Exercise 2

Differentiate Eq. 11.16 with respect to λ and show that this derivative is always ≤ 0. Hint: Recall the definition of the variance (of the energy).

Solution. First, we'll put \hat{H} in it's eigenbasis so it's diagonal. That makes these computations much easier.

$$
\frac{\mathrm{d}}{\mathrm{~d} \lambda} \bar{E}=\frac{\mathrm{d}}{\mathrm{~d} \lambda}\left(\frac{1}{\sum_{n} \mathrm{e}^{-\lambda E_{n}}} \sum_{n} E_{n} \mathrm{e}^{-\lambda E_{n}}\right)
$$

This is going to get a touch messy so let's break this into two pieces and then apply the chain rule $f^{\prime}=g^{\prime} h+g h^{\prime 1}$ later. So we'll first calculate the derivative of the first and second terms separately.

$$
\frac{\mathrm{d}}{\mathrm{~d} \lambda}\left(\frac{1}{\sum_{n} \mathrm{e}^{-\lambda E_{n}}}\right)=\frac{\sum_{n} E_{n} \mathrm{e}^{-\lambda E_{n}}}{\left(\sum_{n} \mathrm{e}^{-\lambda E_{n}}\right)^{2}} \quad \frac{\mathrm{~d}}{\mathrm{~d} \lambda}\left(\sum_{n} E_{n} \mathrm{e}^{-\lambda E_{n}}\right)=-\sum_{n} E_{n}^{2} \mathrm{e}^{-\lambda E_{n}}
$$

Putting these back together we have:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \lambda} \bar{E} & =\left(\frac{\sum_{n} E_{n} \mathrm{e}^{-\lambda E_{n}}}{\sum_{n} \mathrm{e}^{-\lambda E_{n}}}\right)^{2}-\frac{\sum_{n} E_{n}^{2} \mathrm{e}^{-\lambda E_{n}}}{\sum_{n} \mathrm{e}^{-\lambda E_{n}}} \\
& =\bar{E}^{2}-\overline{E^{2}} \\
& =-(\Delta E)^{2}
\end{aligned}
$$

Because we know $\Delta E \geq 0$, we can conclude $\frac{\mathrm{d} E}{\mathrm{~d} \lambda} \leq 0$ as desired.

[^0]
Exercise 3

Consider a quantum harmonic oscillator of frequency ω in a thermal environment with temperature T.
(a) Calculate its thermal state $\hat{\rho}$.
(b) Explicitly calculate the energy expectation value $\bar{E}(\beta)$ as a function of the inverse temperature β.
Hint: Consider using the geometric series $\sum_{n=0}^{\infty} \mathrm{e}^{-\alpha n}=\sum_{n=0}^{\infty}\left(\mathrm{e}^{\alpha}\right)^{n}=1 /\left(1-\mathrm{e}^{-\alpha}\right)$ which holds for all $\alpha>0$. Also the derivative of this equation with respect to α is useful.

Solution. ?? In the eigenbasis of the Hamiltonian we have

$$
\hat{H}=\left[\begin{array}{llll}
E_{0} & & & \\
& E_{1} & & \\
& & E_{2} & \\
& & & \ddots
\end{array}\right]
$$

which makes it easy to see that our thermal state is given by the following

$$
\hat{\rho}=\frac{1}{\sum_{n} \mathrm{e}^{-\beta E_{n}}}\left[\begin{array}{llll}
\mathrm{e}^{-\beta E_{0}} & & & \\
& \mathrm{e}^{-\beta E_{1}} & & \\
& & \mathrm{e}^{-\beta E_{2}} & \\
& & & \ddots
\end{array}\right]
$$

where $E_{n}=\hbar \omega\left(n+\frac{1}{2}\right)$.
?? We start with the equation

$$
\bar{E}(\beta)=\frac{1}{\operatorname{tr}\left(e^{-\beta \hat{H}}\right)} \operatorname{tr}\left(\hat{H} \mathrm{e}^{-\beta \hat{H}}\right)
$$

Let's take this step by step and calculate the trace of the simpler $\mathrm{e}^{-\beta \hat{H}}$ first.

$$
\begin{aligned}
\operatorname{tr}(-\beta \hat{H}) & =\sum_{n}\langle n| \mathrm{e}^{-\beta \hat{H}}|n\rangle \\
& =\sum_{n} \mathrm{e}^{-\beta \hbar \omega\left(n+\frac{1}{2}\right)} \\
& =\mathrm{e}^{-\beta \hbar \omega / 2} \sum_{n} \mathrm{e}^{-\beta \hbar \omega n} \\
& =\frac{\mathrm{e}^{-\beta \hbar \omega / 2}}{1-\mathrm{e}^{-\beta \hbar \omega}} \\
& =\frac{\mathrm{e}^{\beta \hbar \omega / 2}}{\mathrm{e}^{\beta \hbar \omega}-1}
\end{aligned}
$$

Now we'll need the trace of $\mathrm{e}^{-\beta \hat{H}} \hat{H}$ also.

$$
\begin{aligned}
\operatorname{tr}\left(\mathrm{e}^{-\beta \hat{H}} \hat{H}\right) & =\sum_{n}\langle n| \mathrm{e}^{-\beta \hat{H}} \hat{H}|n\rangle \\
& =\sum_{n} \mathrm{e}^{-\beta \hbar \omega\left(n+\frac{1}{2}\right)}\left[\hbar \omega\left(n+\frac{1}{2}\right)\right] \\
& =\frac{\hbar \omega}{2} \sum_{n} \mathrm{e}^{-\beta \hbar \omega\left(n+\frac{1}{2}\right)}+\hbar \omega \sum_{n} n \mathrm{e}^{-\beta \hbar \omega\left(n+\frac{1}{2}\right)} \\
& =\frac{\hbar \omega}{2} \frac{\mathrm{e}^{\beta \hbar \omega / 2}}{\mathrm{e}^{\beta \hbar \omega}-1}+\hbar \omega \mathrm{e}^{-\beta \hbar \omega / 2} \frac{\mathrm{e}^{-\beta \hbar \omega}}{\left(1-\mathrm{e}^{-\beta \hbar \omega}\right)^{2}} \\
& =\frac{\hbar \omega}{2} \frac{\mathrm{e}^{\beta \hbar \omega / 2}}{\mathrm{e}^{\beta \hbar \omega}-1}+\hbar \omega \frac{\mathrm{e}^{\beta \hbar \omega / 2}}{\left(\mathrm{e}^{\beta \hbar \omega}-1\right)^{2}} \\
& =\hbar \omega \frac{\mathrm{e}^{\beta \hbar \omega / 2}}{\mathrm{e}^{\beta \hbar \omega}-1}\left(\frac{1}{2}+\frac{1}{\mathrm{e}^{\beta \hbar \omega}-1}\right)
\end{aligned}
$$

Putting these together we have

$$
\bar{E}(\beta)=\frac{1}{\operatorname{tr}\left(\mathrm{e}^{-\beta \hat{H}}\right)} \operatorname{tr}\left(\hat{H} \mathrm{e}^{-\beta \hat{H}}\right)=\frac{\hbar \omega}{2}+\frac{\hbar \omega}{\mathrm{e}^{\beta \hbar \omega}-1} .
$$

Exercise 1

Assume that the density operator of system A is $\hat{\rho}^{(A)}$ and that $\hat{f}^{(A)}$ is an observable in system A. Then the prediction for $\bar{f}^{(A)}$ is given as always by $\bar{f}=\operatorname{tr}\left(\hat{\rho}^{(A)} \hat{f}^{(A)}\right)$. Now assume that the density operator of a combined system $A B$ happens to be of the form $\hat{\rho}^{(A B)}=\hat{\rho}^{(A)} \otimes \hat{\rho}^{(B)}$. Show that the operator $\hat{f}^{(A)} \otimes \mathbb{1}$ represents the observable $\hat{f}^{(A)}$ on the larger system AB , which means that the prediction $\bar{f}(A)$ can also be calculated within the large system AB , namely as the expectation value of the observable $\hat{f}^{(A)} \otimes \mathbb{1}$. I.e., the task is to show that $\bar{f}^{(A)}=\operatorname{tr}\left(\hat{\rho}^{(A B)}\left(\hat{f}^{(A)} \otimes \mathbb{1}\right)\right)$.

Solution.

$$
\begin{aligned}
\bar{f}_{A}^{(A)} & =\operatorname{tr}\left(\hat{\rho}^{(A)} \hat{f}^{(A)}\right) \\
\bar{f}_{A B}^{(A)} & =\operatorname{tr}\left(\hat{\rho}^{(A B)}\left(\hat{f}^{A} \otimes \mathbb{1}\right)\right) \\
& =\operatorname{tr}\left(\hat{\rho}^{(A)} \otimes \hat{\rho}^{(B)}\left(\hat{f}^{A} \otimes \mathbb{1}\right)\right) \\
& =\operatorname{tr}\left(\hat{\rho}^{(A)} \hat{f}^{A} \otimes \hat{\rho}^{(B)}\right) \\
& =\operatorname{tr}\left(\hat{\rho}^{(A)} \hat{f}^{A}\right) \operatorname{tr}\left(\hat{\rho}^{(B)}\right) \\
& =\operatorname{tr}\left(\hat{\rho}^{(A)} \hat{f}^{A}\right)=\bar{f}_{A}^{(A)}
\end{aligned}
$$

Thus we conclude the observable measured with respect to the system $\mathrm{A} \bar{f}_{A}^{(A)}$ is equal to the observable measured with respect to the combined system $\mathrm{AB} \bar{f}_{A}^{(A B)}$.

Exercise 2

Prove the proposition above. Hint: Notice that the trace on the left hand side is a trace in the large Hilbert space $\mathcal{H}^{(A B)}$ while the trace on the right hand side is a trace over only the Hilbert space $\mathcal{H}^{(A)}$.

Solution. Let's start with the right hand side of the proposition. We'll do this piece by piece since it's messy.

$$
\begin{aligned}
\hat{f}^{(A)} \otimes \mathbb{1} & =\left(\sum_{i, j} f_{i j}\left|a_{i}\right\rangle\left\langle a_{j}\right|\right) \otimes\left(\sum_{n}\left|b_{n}\right\rangle\left\langle b_{n}\right|\right) \\
& =\sum_{i, j, n} f_{i j}\left|a_{i}\right\rangle\left\langle a_{j}\right| \otimes\left|b_{n}\right\rangle\left\langle b_{n}\right| \\
\left(\hat{f}^{(A)} \otimes \mathbb{1}\right) \hat{S}^{(A B)} & =\left[\sum_{i, j, n} f_{i j}\left|a_{i}\right\rangle\left\langle a_{j}\right| \otimes\left|b_{n}\right\rangle\left\langle b_{n}\right|\right] \sum_{r, s, t, u} S_{r s t u}\left|a_{r}\right\rangle \otimes\left|b_{s}\right\rangle\left\langle a_{t}\right| \otimes\left\langle b_{n}\right| \\
& =\sum_{i, j, n, t, u} f_{i j} S_{j n t u}\left|a_{i}\right\rangle\left\langle a_{t}\right| \otimes\left|b_{n}\right\rangle\left\langle b_{u}\right| \\
& =\sum_{i, j, n, t, u} f_{i j} S_{j n t u}\left(\left|a_{i}\right\rangle \otimes\left|b_{n}\right\rangle\right)\left(\left\langle a_{t}\right| \otimes\left\langle b_{u}\right|\right) \\
\operatorname{tr}\left(\left(\hat{f}^{(A)} \otimes \mathbb{1}\right) \hat{S}^{(A B)}\right) & =\sum_{k, s}\left\langle a_{k}\right| \otimes\left\langle b_{s}\right|\left(\hat{f}^{(A)} \otimes \mathbb{1}\right) \hat{S}^{(A B)}\left|a_{k}\right\rangle \otimes\left|b_{s}\right\rangle \\
& =\sum_{k, j, s} f_{k j} S_{j s k s}
\end{aligned}
$$

Now the right hand side.

$$
\begin{aligned}
\hat{g}^{(A)} & =\sum_{i}\left\langle b_{i}\right|\left[\sum_{j, k, s, n} S_{j k s n}\left(\left|a_{j}\right\rangle \otimes\left|b_{k}\right\rangle\right)\left(\left\langle a_{s}\right| \otimes\left\langle b_{n}\right|\right)\right]\left|b_{i}\right\rangle \\
& =\sum_{i, j, s} S_{j i s i}\left|a_{j}\right\rangle\left\langle a_{s}\right| \\
\hat{f}^{(A)} \hat{g}^{(A)} & =\left[\sum_{i, j} f_{i j}\left|a_{i}\right\rangle\left\langle a_{j}\right|\right]\left[\sum_{i, j, s} S_{j i s i}\left|a_{j}\right\rangle\left\langle a_{s}\right|\right] \\
& =\sum_{i, j, s, n} f_{i j} S_{j s n s}\left|a_{i}\right\rangle\left\langle a_{n}\right| \\
\operatorname{tr}\left(\hat{f}^{(A)} \hat{g}^{(A)}\right) & =\sum_{k}\left\langle a_{k}\right|\left[\sum_{i, j, s, n} f_{i j} S_{j s n s}\left|a_{i}\right\rangle\left\langle a_{n}\right|\right]\left|a_{k}\right\rangle \\
& =\sum_{k, j, s} f_{k j} S_{j s k s}
\end{aligned}
$$

Wow I didn't even plan it so the indices match, but they do!

Exercise 3

Consider two systems, A and B, with Hilbert spaces $\mathcal{H}^{(A)}$ and $\mathcal{H}^{(B)}$ which each are only two-dimensional. Assume that $\left\{\left|a_{1}\right\rangle,\left|a_{2}\right\rangle\right\}$ and $\left\{\left|b_{1}\right\rangle,\left|b_{2}\right\rangle\right\}$ are orthonormal bases of the Hilbert spaces $\mathcal{H}^{(A)}$ and $\mathcal{H}^{(B)}$ respectively. Assume that the composite system AB is in a pure state $|\Omega\rangle \in \mathcal{H}^{(A B)}$ given by:

$$
|\Omega\rangle:=\alpha\left(\left|a_{1}\right\rangle\left|b_{2}\right\rangle+3\left|a_{2}\right\rangle\left|b_{1}\right\rangle\right)
$$

Here, $\alpha \in \mathbb{R}$ is a constant so that $|\Omega\rangle$ is normalized: $\langle\Omega \mid \Omega\rangle=1$.
(a) Calculate α
(b) Is $|\Omega\rangle$ an entangled or unentangled state?
(c) Calculte the density matrix $\hat{\rho}^{(A)}$ of subsystem A. Is it pure or mixed? Hint: you can use your reply to (b).

Solution. ?? All we have to do is ensure the state $|\Omega\rangle$ is normalized.

$$
\begin{aligned}
1=\langle\Omega \mid \Omega\rangle & =\alpha^{2}\left(\left\langle a_{1}\right|\left\langle b_{2}\right|+3\left\langle a_{2}\right|\left\langle b_{1}\right|\right)\left(\left|a_{1}\right\rangle\left|b_{2}\right\rangle+3\left|a_{2}\right\rangle\left|b_{1}\right\rangle\right) \\
& =\alpha^{2}(1+9) \\
\alpha & = \pm \frac{1}{\sqrt{10}}
\end{aligned}
$$

?? The state $|\Omega\rangle$ is entangled because it can't be as a simple product $|\Omega\rangle \neq|\psi\rangle \otimes|\phi\rangle$. This can be shown by assuming they can and arriving at a contradiction.

$$
\begin{aligned}
|\Omega\rangle & =|\psi\rangle \otimes|\phi\rangle \\
& =\left(c_{1}\left|a_{1}\right\rangle+c_{2}\left|a_{2}\right\rangle\right) \otimes\left(d_{1}\left|b_{1}\right\rangle+d_{2}\left|d_{2}\right\rangle\right) \\
& =\underbrace{c_{1} d_{1}}_{0}\left|a_{1} b_{1}\right\rangle+\underbrace{c_{1} d_{2}}_{\frac{1}{\sqrt{10}}}\left|a_{1} b_{2}\right\rangle+\underbrace{c_{2} d_{1}}_{\frac{3}{\sqrt{10}}}\left|a_{2} b_{1}\right\rangle+\underbrace{c_{1} d_{2}}_{0}\left|a_{2} b_{2}\right\rangle
\end{aligned}
$$

The first equation $c_{1} d_{1}=0$ tells us c_{1} or d_{1} is 0 , but then both $c_{1} d_{2}=\frac{1}{\sqrt{10}}$ and $c_{2} d_{1}=\frac{3}{\sqrt{10}}$ are impossible to satisfy simultaneously. Thus it is impossible to write this state as a product and hence it is entangled.
??

$$
\begin{aligned}
\rho^{(A)} & =\operatorname{tr}_{B}\left(\rho^{(A B)}\right)=\sum_{n=1}^{2}\left\langle b_{n} \mid \Omega\right\rangle\left\langle\Omega \mid b_{n}\right\rangle \\
& =\frac{1}{10}\left[\left|a_{1}\right\rangle\left\langle a_{1}\right|+9\left|a_{2}\right\rangle\left\langle a_{2}\right|\right]
\end{aligned}
$$

This is clearly of the form $\sum_{n} p_{n}\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right|$ with $\sum_{n} p_{n}=1$ and hence is a mixed state. We can also conclude this by the fact that $|\Omega\rangle$ is entangled.

Exercise 1

(a) Show that $\hat{U}(t)$ is unitary.
(b) Calculate $\hat{\rho}^{(A B)}(t)$.
(c) Use the result of (b) to calculate $\hat{\rho}^{(A)}(t)$.
(d) Calculate, therefore, the purity measure $P\left[\hat{\rho}^{(A)}(t)\right]$ and sketch a plot of it as a function of time.
(e) Now in our example here, if the initial state were instead $\left|\Omega\left(t_{0}\right)\right\rangle=\left|a_{1}\right\rangle\left|b_{2}\right\rangle$, what would then be the purity measure of $\hat{\rho}^{(A)}$ as a function of time? Hint: In this case, there is a quick way to get the answer.

Solution. ?? This is really tedious. Why do you make us do this? We'll do this by showing $\hat{U} \hat{U}^{\dagger}=\mathbb{1}$.

$$
\begin{aligned}
\hat{U} \hat{U}^{\dagger}= & \left|a_{1} b_{2}\right\rangle\left\langle a_{1} b_{2}\right|+\left|a_{2} b_{1}\right\rangle\left\langle a_{2} b_{1}\right| \\
& +\sin ^{2}(\omega t)\left|a_{2} b_{2}\right\rangle\left\langle a_{2} b_{2}\right|+\sin \omega t \cos \omega t\left|a_{2} b_{2}\right\rangle\left\langle a_{1} b_{1}\right| \\
& +\sin ^{2}(\omega t)\left|a_{1} b_{1}\right\rangle\left\langle a_{1} b_{1}\right|-\sin \omega t \cos \omega t\left|a_{1} b_{1}\right\rangle\left\langle a_{2} b_{2}\right| \\
& +\cos ^{2}(\omega t)\left|a_{2} b_{2}\right\rangle\left\langle a_{2} b_{2}\right|-\sin \omega t \cos \omega t\left|a_{2} b_{2}\right\rangle\left\langle a_{1} b_{1}\right| \\
& \quad+\cos ^{2}(\omega t)\left|a_{1} b_{1}\right\rangle\left\langle a_{1} b_{1}\right|+\sin \omega t \cos \omega t\left|a_{1} b_{1}\right\rangle\left\langle a_{2} b_{2}\right| \\
= & \left|a_{1} b_{2}\right\rangle\left\langle a_{1} b_{2}\right|+\left|a_{2} b_{1}\right\rangle\left\langle a_{2} b_{1}\right|+\left|a_{2} b_{2}\right\rangle\left\langle a_{2} b_{2}\right|+\left|a_{1} b_{1}\right\rangle\left\langle a_{1} b_{1}\right| \\
= & \sum_{i, j=1}^{2}\left|a_{i} b_{j}\right\rangle\left\langle a_{i} b_{j}\right|=\mathbb{1}
\end{aligned}
$$

?? First we need to know $|\Omega(t)\rangle=U\left|\Omega\left(t_{0}\right)\right\rangle=\sin \omega t\left|a_{2} b_{2}\right\rangle+\cos \omega t\left|a_{1} b_{1}\right\rangle$.

$$
\begin{aligned}
\hat{\rho}^{(A B)}(t)= & \hat{U}\left|\Omega\left(t_{0}\right)\right\rangle\left\langle\Omega\left(t_{0}\right)\right| \hat{U}^{\dagger} \\
= & \sin ^{2}(\omega t)\left|a_{2} b_{2}\right\rangle\left\langle a_{2} b_{2}\right|+\sin \omega t \cos \omega t\left|a_{2} b_{2}\right\rangle\left\langle a_{1} b_{1}\right| \\
& \quad+\sin \omega t \cos \omega t\left|a_{1} b_{1}\right\rangle\left\langle a_{2} b_{2}\right|+\cos ^{2}(\omega t)\left|a_{1} b_{1}\right\rangle\left\langle a_{1} b_{1}\right|
\end{aligned}
$$

??

$$
\begin{aligned}
\hat{\rho}^{(A)}(t) & =\operatorname{tr}_{B}\left(\hat{\rho}^{(A B)}(t)\right) \\
& =\sum_{n=1}^{2}\left\langle b_{n}\right| \hat{\rho}^{(A B)}(t)\left|b_{n}\right\rangle \\
& =\sin ^{2}(\omega t)\left|a_{2}\right\rangle\left\langle a_{2}\right|+\cos ^{2}(\omega t)\left|a_{1}\right\rangle\left\langle a_{1}\right|
\end{aligned}
$$

?? We can now calculate the square of the density matrix as $\hat{\rho}^{2}=\sin ^{4}(\omega t)+\cos ^{4}(\omega t)$. Below is a plot of this function.
?? Given this new initial state, then the state never picks up any time dependence on evolution $|\Omega(t)\rangle=\left|a_{1} b_{2}\right\rangle$, and hence this state stays a pure state and hence the purity P remains at 1 .

Exercise 2

Assume a system possesses a Hilbert space that is N-dimensional. Which state ρ is its least pure, i.e., which is its maximally mixed state, and what is the value of the purity $P[\rho]$ of that state?

Solution. The state ρ that is the most mixed is that state that is a uniform distribution across all possible states: $\rho=\frac{1}{N} \mathbb{1}$. The purity of this state is $P[\rho]=\operatorname{tr}\left(\rho^{2}\right)=\frac{1}{N^{2}} \operatorname{tr}(\mathbb{1})=$ $\frac{1}{N}$.

Exercise 1

In the example of two identical bosonic subsystems just above, assume now that $\hat{H}^{(A)}\left|a_{j}\right\rangle=E_{j}\left|a_{j}\right\rangle$ with $E_{1}=0$ and $E_{2}=E>0$.
(a) Calculate the thermal density matrix of the system AA. In particular, what are the probabilities for the three basis states of Eq. 16.7 as a function of the temperature?
(b) Determine the temperature dependence of the preference of bosons to be in the same state: Does this preference here increase or decrease as the temperature either goes to zero or to infinity?

Solution. ?? Let's first calculate the action of $\hat{H}^{(A A)}$ on our basis states.

$$
\begin{aligned}
\hat{H}^{(A A)}\left|a_{1} a_{1}\right\rangle & =0 \\
\hat{H}^{(A A)}\left|a_{2} a_{2}\right\rangle & =2 E\left|a_{2} a_{2}\right\rangle \\
\hat{H}^{(A A)} \frac{1}{\sqrt{2}}\left(\left|a_{1} a_{2}\right\rangle+\left|a_{2} a_{1}\right\rangle\right) & =E \frac{1}{\sqrt{2}}\left(\left|a_{1} a_{2}\right\rangle+\left|a_{2} a_{1}\right\rangle\right)
\end{aligned}
$$

So now we know our Hamiltonian takes the form

$$
\hat{H}^{(A A)}=\left[\begin{array}{lll}
0 & & \\
& 2 E & \\
& & E
\end{array}\right]
$$

and hence our density matrix looks like

$$
\hat{\rho}=\frac{1}{\mathrm{e}^{-2 \beta E}+\mathrm{e}^{-\beta E}}\left[\begin{array}{lll}
0 & & \\
& \mathrm{e}^{-2 \beta E} & \\
& & \mathrm{e}^{-\beta E}
\end{array}\right]=\left[\begin{array}{lll}
0 & & \\
& \frac{1}{\mathrm{e}^{\beta E}+1} & \\
& & \frac{\mathrm{e}^{\beta E}}{\mathrm{e}^{\beta E}+1}
\end{array}\right] .
$$

Hence the probabilities are exactly those terms on the diagonal.
?? Since the $\left|a_{2} a_{2}\right\rangle$ term is the only one representing bosons, we just divide that by the other non-zero term.

$$
\text { Bosonic Preference }=\frac{1}{\mathrm{e}^{\beta E}+1} \frac{\mathrm{e}^{\beta E}+1}{\mathrm{e}^{\beta E}}=\mathrm{e}^{-\frac{E}{k T}}
$$

As $T \rightarrow 0$, this preference goes to 0 and hence the particles are more likely to be in the entangled state. As $T \rightarrow \infty$ they are more likely to be in the same state.

[^0]: ${ }^{1}$ Just in case you forgot © ©

