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Exercise 1
Show that, conversely, as the temperature is driven to zero, β → ∞, the density
matrix tends towards the pure ground state of the Hamiltonian.

Solution. First note that we can write the density matrix as

ρ̂ =
∞

∑
i=0

e−βEi

Z
|Ei⟩⟨Ei| .

where Z is the usual partition function. Now we can pull out the first term marked by
the property that is has the lowest energy E0 ≤ Ei for all i.

ρ̂ = e−βE0
∞

∑
i=0

e−β(Ei−E0)

Z
|Ei⟩⟨Ei|

= e−βE0

[
1
Z
|E0⟩⟨E0|+

∞

∑
i=1

e−β(Ei−E0)

Z
|Ei⟩⟨Ei|

]
(1)

Now let’s take a look at the partition function when β → ∞.

lim
β→∞

Z = lim
β→∞

e−βE0 + e−βE1 + e−βE2 + · · · ≈ e−βE0

Where, I don’t think this is very rigorous, but makes intuitive sense because every
Ei ≥ E0, so they go to 0 faster. This allows us to cancel the terms in front of the |E0⟩⟨E0|
term, and using the fact that limβ→∞ e−βE = 0 we can drop the second term of ??. This
leaves us with

lim
β→∞

ρ̂ = |E0⟩⟨E0| .

I think somewhat equivalently, one could scale all the energies so that Ẽ0 = 0, and
Ẽi = Ei − E0. This maybe makes it more clear that the first term isn’t going anywhere,
but everything else will. I just wasn’t sure if that’s always valid to scale the energies
like that.
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Exercise 2
Differentiate Eq.11.16 with respect to λ and show that this derivative is always
≤ 0. Hint: Recall the definition of the variance (of the energy).

Solution. First, we’ll put Ĥ in it’s eigenbasis so it’s diagonal. That makes these compu-
tations much easier.

d
dλ

E =
d

dλ

(
1

∑n e−λEn ∑
n

Ene−λEn

)

This is going to get a touch messy so let’s break this into two pieces and then apply the
chain rule f ′ = g′h + gh′1 later. So we’ll first calculate the derivative of the first and
second terms separately.

d
dλ

(
1

∑n e−λEn

)
=

∑n Ene−λEn

(∑n e−λEn)
2

d
dλ

(
∑
n

Ene−λEn

)
= −∑

n
E2

ne−λEn

Putting these back together we have:

d
dλ

E =

(
∑n Ene−λEn

∑n e−λEn

)2

− ∑n E2
ne−λEn

∑n e−λEn

= E2 − E2

= −(∆E)2

Because we know ∆E ≥ 0, we can conclude dE
dλ ≤ 0 as desired.

1Just in case you forgot .
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Exercise 3
Consider a quantum harmonic oscillator of frequency ω in a thermal environment
with temperature T.

(a) Calculate its thermal state ρ̂.
(b) Explicitly calculate the energy expectation value E(β) as a function of the

inverse temperature β.
Hint: Consider using the geometric series ∑∞

n=0 e−αn = ∑∞
n=0(e

α)n = 1/(1 − e−α)
which holds for all α > 0. Also the derivative of this equation with respect to α is
useful.

Solution. ?? In the eigenbasis of the Hamiltonian we have

Ĥ =


E0

E1
E2

. . .


which makes it easy to see that our thermal state is given by the following

ρ̂ =
1

∑n e−βEn


e−βE0

e−βE1

e−βE2

. . .


where En = h̄ω(n + 1

2).
?? We start with the equation

E(β) =
1

tr
(

e−βĤ
) tr

(
Ĥe−βĤ

)
.

Let’s take this step by step and calculate the trace of the simpler e−βĤ first.

tr
(
−βĤ

)
= ∑

n
⟨n| e−βĤ |n⟩

= ∑
n

e−βh̄ω(n+ 1
2 )

= e−βh̄ω/2 ∑
n

e−βh̄ωn

=
e−βh̄ω/2

1 − e−βh̄ω

=
eβh̄ω/2

eβh̄ω − 1
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Now we’ll need the trace of e−βĤ Ĥ also.

tr
(

e−βĤ Ĥ
)
= ∑

n
⟨n| e−βĤ Ĥ |n⟩

= ∑
n

e−βh̄ω(n+ 1
2 )

[
h̄ω

(
n +

1
2

)]
=

h̄ω

2 ∑
n

e−βh̄ω(n+ 1
2 ) + h̄ω ∑

n
ne−βh̄ω(n+ 1

2 )

=
h̄ω

2
eβh̄ω/2

eβh̄ω − 1
+ h̄ωe−βh̄ω/2 e−βh̄ω

(1 − e−βh̄ω)2

=
h̄ω

2
eβh̄ω/2

eβh̄ω − 1
+ h̄ω

eβh̄ω/2

(eβh̄ω − 1)2

= h̄ω
eβh̄ω/2

eβh̄ω − 1

(
1
2
+

1
eβh̄ω − 1

)
Putting these together we have

E(β) =
1

tr
(

e−βĤ
) tr

(
Ĥe−βĤ

)
=

h̄ω

2
+

h̄ω

eβh̄ω − 1
.
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Exercise 1

Assume that the density operator of system A is ρ̂(A) and that f̂ (A) is an observable

in system A. Then the prediction for f
(A)

is given as always by f = tr
(

ρ̂(A) f̂ (A)
)

.
Now assume that the density operator of a combined system AB happens to be of
the form ρ̂(AB) = ρ̂(A) ⊗ ρ̂(B). Show that the operator f̂ (A) ⊗ 1 represents the ob-
servable f̂ (A) on the larger system AB, which means that the prediction f (A) can
also be calculated within the large system AB, namely as the expectation value of

the observable f̂ (A) ⊗ 1. I.e., the task is to show that f
(A)

= tr
(

ρ̂(AB)( f̂ (A) ⊗ 1)
)

.

Solution.

f
(A)
A = tr

(
ρ̂(A) f̂ (A)

)
f
(A)
AB = tr

(
ρ̂(AB)

(
f̂ A ⊗ 1

))
= tr

(
ρ̂(A) ⊗ ρ̂(B)

(
f̂ A ⊗ 1

))
= tr

(
ρ̂(A) f̂ A ⊗ ρ̂(B)

)
= tr

(
ρ̂(A) f̂ A

)
tr
(

ρ̂(B)
)

= tr
(

ρ̂(A) f̂ A
)
= f

(A)
A

Thus we conclude the observable measured with respect to the system A f
(A)
A is equal

to the observable measured with respect to the combined system AB f
(AB)
A .
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Exercise 2
Prove the proposition above. Hint: Notice that the trace on the left hand side is a
trace in the large Hilbert space H(AB) while the trace on the right hand side is a
trace over only the Hilbert space H(A).

Solution. Let’s start with the right hand side of the proposition. We’ll do this piece by
piece since it’s messy.

f̂ (A) ⊗ 1 =

(
∑
i,j

fij
∣∣ai
〉〈

aj
∣∣)⊗

(
∑
n
|bn⟩⟨bn|

)
= ∑

i,j,n
fij
∣∣ai
〉〈

aj
∣∣⊗ |bn⟩⟨bn|

(
f̂ (A) ⊗ 1

)
Ŝ(AB) =

[
∑
i,j,n

fij
∣∣ai
〉〈

aj
∣∣⊗ |bn⟩⟨bn|

]
∑

r,s,t,u
Srstu |ar⟩ ⊗ |bs⟩ ⟨at| ⊗ ⟨bn|

= ∑
i,j,n,t,u

fijSjntu |ai⟩⟨at| ⊗ |bn⟩⟨bu|

= ∑
i,j,n,t,u

fijSjntu(|ai⟩ ⊗ |bn⟩)(⟨at| ⊗ ⟨bu|)

tr
((

f̂ (A) ⊗ 1
)

Ŝ(AB)
)
= ∑

k,s
⟨ak| ⊗ ⟨bs|

(
f̂ (A) ⊗ 1

)
Ŝ(AB) |ak⟩ ⊗ |bs⟩

= ∑
k,j,s

fkjSjsks

Now the right hand side.

ĝ(A) = ∑
i
⟨bi|

[
∑

j,k,s,n
Sjksn

(∣∣aj
〉
⊗ |bk⟩

)
(⟨as| ⊗ ⟨bn|)

]
|bi⟩

= ∑
i,j,s

Sjisi
∣∣aj
〉〈

as
∣∣

f̂ (A) ĝ(A) =

[
∑
i,j

fij
∣∣ai
〉〈

aj
∣∣][∑

i,j,s
Sjisi

∣∣aj
〉〈

as
∣∣]

= ∑
i,j,s,n

fijSjsns |ai⟩⟨an|

tr
(

f̂ (A) ĝ(A)
)
= ∑

k
⟨ak|

[
∑

i,j,s,n
fijSjsns |ai⟩⟨an|

]
|ak⟩

= ∑
k,j,s

fkjSjsks

Wow I didn’t even plan it so the indices match, but they do!
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Exercise 3

Consider two systems, A and B, with Hilbert spaces H(A) and H(B) which each
are only two-dimensional. Assume that {|a1⟩ , |a2⟩} and {|b1⟩ , |b2⟩} are orthonor-
mal bases of the Hilbert spaces H(A) and H(B) respectively. Assume that the
composite system AB is in a pure state |Ω⟩ ∈ H(AB) given by:

|Ω⟩ := α(|a1⟩ |b2⟩+ 3 |a2⟩ |b1⟩)

Here, α ∈ R is a constant so that |Ω⟩ is normalized:⟨Ω|Ω⟩ = 1.
(a) Calculate α

(b) Is |Ω⟩ an entangled or unentangled state?
(c) Calculte the density matrix ρ̂(A) of subsystem A. Is it pure or mixed? Hint:

you can use your reply to (b).

Solution. ?? All we have to do is ensure the state |Ω⟩ is normalized.

1 = ⟨Ω|Ω⟩ = α2(⟨a1| ⟨b2|+ 3 ⟨a2| ⟨b1|)(|a1⟩ |b2⟩+ 3 |a2⟩ |b1⟩)
= α2(1 + 9)

α = ± 1√
10

?? The state |Ω⟩ is entangled because it can’t be as a simple product |Ω⟩ ̸= |ψ⟩ ⊗ |ϕ⟩.
This can be shown by assuming they can and arriving at a contradiction.

|Ω⟩ = |ψ⟩ ⊗ |ϕ⟩
= (c1 |a1⟩+ c2 |a2⟩)⊗ (d1 |b1⟩+ d2 |d2⟩)
= c1d1︸︷︷︸

0

|a1b1⟩+ c1d2︸︷︷︸
1√
10

|a1b2⟩+ c2d1︸︷︷︸
3√
10

|a2b1⟩+ c1d2︸︷︷︸
0

|a2b2⟩

The first equation c1d1 = 0 tells us c1 or d1 is 0, but then both c1d2 = 1√
10

and c2d1 = 3√
10

are impossible to satisfy simultaneously. Thus it is impossible to write this state as a
product and hence it is entangled.

??

ρ(A) = trB

(
ρ(AB)

)
=

2

∑
n=1

⟨bn|Ω⟩ ⟨Ω|bn⟩

=
1

10
[|a1⟩⟨a1|+ 9 |a2⟩⟨a2|]

This is clearly of the form ∑n pn |ψn⟩⟨ψn| with ∑n pn = 1 and hence is a mixed state. We
can also conclude this by the fact that |Ω⟩ is entangled.
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Exercise 1

(a) Show that Û(t) is unitary.
(b) Calculate ρ̂(AB)(t).
(c) Use the result of (b) to calculate ρ̂(A)(t).
(d) Calculate, therefore, the purity measure P[ρ̂(A)(t)] and sketch a plot of it as

a function of time.
(e) Now in our example here, if the initial state were instead |Ω(t0)⟩ = |a1⟩ |b2⟩,

what would then be the purity measure of ρ̂(A) as a function of time? Hint:
In this case, there is a quick way to get the answer.

Solution. ?? This is really tedious. Why do you make us do this? We’ll do this by
showing ÛÛ† = 1.

ÛÛ† = |a1b2⟩⟨a1b2|+ |a2b1⟩⟨a2b1|
+ sin2(ωt) |a2b2⟩⟨a2b2|+ sin ωt cos ωt |a2b2⟩⟨a1b1|
+ sin2(ωt) |a1b1⟩⟨a1b1| − sin ωt cos ωt |a1b1⟩⟨a2b2|
+ cos2(ωt) |a2b2⟩⟨a2b2| − sin ωt cos ωt |a2b2⟩⟨a1b1|
+ cos2(ωt) |a1b1⟩⟨a1b1|+ sin ωt cos ωt |a1b1⟩⟨a2b2|

= |a1b2⟩⟨a1b2|+ |a2b1⟩⟨a2b1|+ |a2b2⟩⟨a2b2|+ |a1b1⟩⟨a1b1|

=
2

∑
i,j=1

∣∣aibj
〉〈

aibj
∣∣ = 1

?? First we need to know |Ω(t)⟩ = U |Ω(t0)⟩ = sin ωt |a2b2⟩+ cos ωt |a1b1⟩.

ρ̂(AB)(t) = Û |Ω(t0)⟩ ⟨Ω(t0)| Û†

= sin2(ωt) |a2b2⟩⟨a2b2|+ sin ωt cos ωt |a2b2⟩⟨a1b1|
+ sin ωt cos ωt |a1b1⟩⟨a2b2|+ cos2(ωt) |a1b1⟩⟨a1b1|

??

ρ̂(A)(t) = trB

(
ρ̂(AB)(t)

)
=

2

∑
n=1

⟨bn| ρ̂(AB)(t) |bn⟩

= sin2(ωt) |a2⟩⟨a2|+ cos2(ωt) |a1⟩⟨a1|

?? We can now calculate the square of the density matrix as ρ̂2 = sin4(ωt)+ cos4(ωt).
Below is a plot of this function.

?? Given this new initial state, then the state never picks up any time dependence on
evolution |Ω(t)⟩ = |a1b2⟩, and hence this state stays a pure state and hence the purity
P remains at 1.
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π
4ω

π
2ω

0.5

1

t

sin4(ωt) + cos4(ωt)
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Exercise 2
Assume a system possesses a Hilbert space that is N-dimensional. Which state ρ
is its least pure, i.e., which is its maximally mixed state, and what is the value of
the purity P[ρ] of that state?

Solution. The state ρ that is the most mixed is that state that is a uniform distribution
across all possible states: ρ = 1

N 1. The purity of this state is P[ρ] = tr
(
ρ2) = 1

N2 tr(1) =
1
N .
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Exercise 1
In the example of two identical bosonic subsystems just above, assume now that
Ĥ(A)

∣∣aj
〉
= Ej

∣∣aj
〉

with E1 = 0 and E2 = E > 0.
(a) Calculate the thermal density matrix of the system AA. In particular, what

are the probabilities for the three basis states of Eq.16.7 as a function of the
temperature?

(b) Determine the temperature dependence of the preference of bosons to be
in the same state: Does this preference here increase or decrease as the
temperature either goes to zero or to infinity?

Solution. ?? Let’s first calculate the action of Ĥ(AA) on our basis states.

Ĥ(AA) |a1a1⟩ = 0

Ĥ(AA) |a2a2⟩ = 2E |a2a2⟩

Ĥ(AA) 1√
2
(|a1a2⟩+ |a2a1⟩) = E

1√
2
(|a1a2⟩+ |a2a1⟩)

So now we know our Hamiltonian takes the form

Ĥ(AA) =

0
2E

E


and hence our density matrix looks like

ρ̂ =
1

e−2βE + e−βE

0
e−2βE

e−βE

 =

0
1

eβE+1
eβE

eβE+1

.

Hence the probabilities are exactly those terms on the diagonal.
?? Since the |a2a2⟩ term is the only one representing bosons, we just divide that by

the other non-zero term.

Bosonic Preference =
1

eβE + 1
eβE + 1

eβE = e−
E

kT

As T → 0, this preference goes to 0 and hence the particles are more likely to be in the
entangled state. As T → ∞ they are more likely to be in the same state.
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