Advanced Quantum Theory Homework 8

Name: Nate Stemen (20906566) Due: Mon, Dec 7, 2020 11:59 AM
Email: nate.stemen@uwaterloo.ca Course: AMATH 673

[ Exercise 1 ] .................................................................

Show that, conversely, as the temperature is driven to zero, B — oo, the density
matrix tends towards the pure ground state of the Hamiltonian.

P

...........................................................................

Solution. First note that we can write the density matrix as

R S e ,BEi
=7 - |Ei)XEi -
i=0

where Z is the usual partition function. Now we can pull out the first term marked by
the property that is has the lowest energy Ey < E; for all i.

. e & e B(Ei—Eo)
p=e Py’ — |Ei)}Eil
i=0
1 © o—B(Ei—Eo

B(Ei—Eo)
— |Ei )(Eil (1)

Now let’s take a look at the partition function when g — co.

lim Z = lim e PFo 4 e PEL e PEa ... e P
B—roo B—roo

Where, I don’t think this is very rigorous, but makes intuitive sense because every
E; > Ey, so they go to 0 faster. This allows us to cancel the terms in front of the |Eg)(Ey|
term, and using the fact that lirn/g_>oo e PE = 0 we can drop the second term of ??. This
leaves us with

lim p = [Eo)(Eo| -

B—co
I think somewhat equivalently, one could scale all the energies so that £y = 0, and
E; = E; — Ey. This maybe makes it more clear that the first term isn’t going anywhere,
but everything else will. I just wasn’t sure if that’s always valid to scale the energies
like that.
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[ Exercise 2 ] .................................................................

Differentiate Eq.11.16 with respect to A and show that this derivative is always
< 0. Hint: Recall the definition of the variance (of the energy).

...........................................................................

Solution. First, we’ll put H in it’s eigenbasis so it’s diagonal. That makes these compu-
tations much easier.

d— d{ 1 L
'@ <>:n it L e )

This is going to get a touch messy so let’s break this into two pieces and then apply the
chain rule f' = ¢’'h + ¢h'! later. So we’ll first calculate the derivative of the first and
second terms separately.

d 1 Y Ene M d “AE 2 —AE
_ — _ E n [ E n
dA(Zne‘AE") (X, e AEn)? dA ; e ; e

Putting these back together we have:

d . _ Y, Epe Mn\* Y E2e A
ET —AE, o —AE,
Y. e Y. e
n n
—F_F?
= —(AE)?

Because we know AE > 0, we can conclude % < 0 as desired.

!Just in case you forgot ©.
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[ Exercise 3 ].

with temperature T.
(a) Calculate its thermal state p.

inverse temperature f.

useful.

Solution. ?? In the eigenbasis of the Hamiltonian we have
Eo

. Eq
H — E2

which makes it easy to see that our thermal state is given by the following

e_ﬁEO
. 1 e_:BEl
p= Y, ePE e PE2
where E, = hiw(n + 3).
?? We start with the equation
1 ~

E(p) =

m tr <I:Ie_ﬁH>.

Consider a quantum harmonic oscillator of frequency w in a thermal environment

(b) Explicitly calculate the energy expectation value E(B) as a function of the

Hint: Consider using the geometric series } ;. e " =Y > ((e*)" =1/(1 —e™ %)
which holds for all « > 0. Also the derivative of this equation with respect to « is

Nate Stemen

Let’s take this step by step and calculate the trace of the simpler ePH first.

tr(—pHA) =Y (n|e P |n)
n
— Ze—ﬁhw(n—&—%)
n
— o Phw/2 Ze—ﬁhwn
n

o—Bhw/2

1—e Phw
ePhw/2

ePhw _ 1
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Now we'll need the trace of e BHH also.

tr (e—ﬁﬁﬁ) =Y (n|e PHH |n)

n
_ V" o Bhw(ntl) 1
et Do )|

_ h%ze—ﬁhw(n—i—%) +hw2ne—ﬁhw(n+%)
n n

Bhw /2 —Bhw
= h_w(;hw— + hwe Pl
2 ePhw —1 (1—e )
how ePhw/2 " ePhw/2
o TG,BFM -1 + w<eﬁhw _ 1)2

ePhw/2 /1 1
- hwe,@hw -1 (E + ebhw _ 1)

Putting these together we have

N A hw hew
_ H .
He p >_7+—eﬁhw—1
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[ Exercise 1 ] .................................................................

| Assume that the density operator of system A is 5(4) and that f(4) is an observable
+  insystem A. Then the prediction for 7(A) is given as always by f = tr <ﬁ(A) f (A)> .
Now assume that the density operator of a combined system AB happens to be of
| the form p(4B) = p(4) @ p(B). Show that the operator £(4) @ 1 represents the ob-
+ servable F(4) on the larger system AB, which means that the prediction f(A) can
' also be calculated within the large system AB, namely as the expectation value of

the observable f(4) @ 1. Le., the task is to show that 7(A) = tr <ﬁ(AB) (fA 11))

...........................................................................

Solution.

Thus we conclude the observable measured with respect to the system A fqu) is equal
to the observable measured with respect to the combined system AB 754143).
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[ Exercise 2 ] .................................................................

Prove the proposition above. Hint: Notice that the trace on the left hand sideisa |
trace in the large Hilbert space #(45) while the trace on the right hand side is a
trace over only the Hilbert space H(4).

Solution. Let’s start with the right hand side of the proposition. We’ll do this piece by
piece since it’s messy.

fPe1= (qu !az-><aj\) ® (Dbnxbu)
1,] n
=) fij|ai)Xaj| © [bu)(ba|

ijn
<f<A>®]1)g<AB> = [Zfij\aixaj\ ®|bn><bn|] Y Srstular) @ |bs) (at] ® (bn|

ijn r,s,t,u

= Y fiSint |ai)ar| ® |by)(by]
ijn,tu

= ) fiiSinu(lai) @ [bn)) ((ar] @ (bul)
ijntu

tr((FV @1)SA8) = ¥ (] @ (b] (FN ©1) 5P Jag) @ [b)

k,s

= kajsjsks
k,j,s

Now the right hand side.

g =3 (b [Z Siksn (|a7) @ |e)) ((as] ®<bn|>] 1b;)

i jksn

=Y Sjisi |a;){as|

i,j,s
prargin [Zfij \ai><a]-|] [z S !a]-><as\]
i if,s
= Z fijSjsns |ai)(an|

i,j,5,n

tr(f(A)g(A)) = Z(ak| [Z fijSisns |ai><”n|] |ak)

k i,j,5,n

= Z fkijsks

k,js

Wow I didn’t even plan it so the indices match, but they do!
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[ Exercise 3 ] .................................................................

Consider two systems, A and B, with Hilbert spaces #(4) and H(B) which each
are only two-dimensional. Assume that {|a1), |a2)} and {|b1), |b2) } are orthonor-
mal bases of the Hilbert spaces #(4) and H(P) respectively. Assume that the
composite system AB is in a pure state | Q) € H(4P) given by:

Q) = a(|ay) |b2) + 3 [az) [b1))

Here, « € R is a constant so that |(}) is normalized:(Q|Q)) = 1.
(a) Calculate a

(b) Is |Q2) an entangled or unentangled state?

(c) Calculte the density matrix p{4) of subsystem A. Is it pure or mixed? Hint:
you can use your reply to (b).

PP A e

Solution. ?? All we have to do is ensure the state |(}) is normalized.

1=(Q[Q) = a?((a1] (ba| + 3 (az| (b1])(|a1) [b2) +3 |az) [b1))
=a%(1+9)
1

N =+t——
V10

?? The state |Q)) is entangled because it can’t be as a simple product |Q)) # |¢) ® |¢p).
This can be shown by assuming they can and arriving at a contradiction.

Q) = |p) @)
= (c1la1) +calaz)) © (dy |br) + da |d2))
= C1d1 |El1b1> + Cldz |El1b2> + Czdl |a2b1> + Cldz |a2b2)
g X e g
V10 V10

The first equation c;d; = 0 tells us ¢ or d; is 0, but then both c1d, = \/% and crd; = \/%

are impossible to satisfy simultaneously. Thus it is impossible to write this state as a

product and hence it is entangled.
??

p4) — try (p49)) = ¥ (B[ (D)

n=1

_ f_o[\alxm +9 |az)(a]

This is clearly of the form Y, pu |, )(¢n| with )}, p, = 1 and hence is a mixed state. We
can also conclude this by the fact that |()) is entangled.
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' (a) Show that U(t) is unitary. E
' (b) Calculate p(AB)(¢). E
| (c) Use the result of (b) to calculate p(4)(t).
| (d) Calculate, therefore, the purity measure P[p{4)(t)] and sketch a plot of it as :
! a function of time. |
; (e) Now in our example here, if the initial state were instead |Q)(to)) = |a1) |b2), i

what would then be the purity measure of §(4) as a function of time? Hint:
In this case, there is a quick way to get the answer.

Solution. ?? This is really tedious. Why do you make us do this? We’ll do this by
showing UU = 1.

TUY = |ayby ) ayby| + |agby Naob, |
+ sin®(wt) |agby )(agba| + sin wt cos wt |azby Maq by |
+ sin®(wt) |ayby Yay by | — sin wt cos wt |ayby Yazb,|
+ cos?(wt) |asbs Yasby| — sin wt cos wt |azby a1 by

X (
+ cos?(wt) |ayby Yayby | 4 sin wt cos wt |aqby Y azby|
)

)
= |a1ba)(a1bz| + |azby Xaxby| + |axba)(axby| + |a1by)(aq b1 |
2

= Y |aibj}aibj| =1

=1
?? First we need to know |Q)(t)) = U |Q(tp)) = sinwt |azby) + cos wt |arby).

PP (1) = U |Q(to)) (k)| U
= sinz(wt) |a2b2><a2b2| + sin wt cos wt |112[92><111b1|

+ sin wt cos wt |aby {azby| + cos?(wt) |ayby Maiby|

??

o (1) = g (p1P) (1))
2

= Z <bn| ﬁ(AB)(t) |bn>

n=1

= sin®(wt) |ax)(az| + cos?(wt) |ai Nay]|

?? We can now calculate the square of the density matrix as p> = sin*(wt) + cos*(wt).
Below is a plot of this function.

?? Given this new initial state, then the state never picks up any time dependence on
evolution |Q)(#)) = |a1b,), and hence this state stays a pure state and hence the purity
P remains at 1.
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sin*(wt) + cos*(wt)

051
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[ Exercise 2 ]. ................................................................

Assume a system possesses a Hilbert space that is N-dimensional. Which state p
is its least pure, i.e., which is its maximally mixed state, and what is the value of
the purity P[p] of that state?

Solution. The state p that is the most mixed is that state that is a uniform distribution

across all possible states: p = /1. The purity of this state is P[p] = tr(p?) = % tr(l) =
1

N

10
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[ Exercise 1 ] .................................................................

In the example of two identical bosonic subsystems just above, assume now that
A |a;) = Ej|aj) with E; = 0and E; = E > 0.

(a) Calculate the thermal density matrix of the system AA. In particular, what
are the probabilities for the three basis states of Eq.16.7 as a function of the
temperature?

(b) Determine the temperature dependence of the preference of bosons to be
in the same state: Does this preference here increase or decrease as the
temperature either goes to zero or to infinity?

Solution. ?? Let’s first calculate the action of H(44) on our basis states.

A

H(AA) |El16l1> =0
H(AA) |L12612> =2E |a2a2>

AAY —(|ayay) + |azay)) = E%H”l’m + laza))

S

So now we know our Hamiltonian takes the form

0
A4 = | 2F
E
and hence our density matrix looks like
0 0
A 1 —2BE _1
= - e ==
Y o 2PE + o—BE P oPE11 o
ePE+1

Hence the probabilities are exactly those terms on the diagonal.
?? Since the |aya;) term is the only one representing bosons, we just divide that by
the other non-zero term.
1 eff+1

E
Bosonic Preference = —e FT
ePE +1 ePE

As T — 0, this preference goes to 0 and hence the particles are more likely to be in the
entangled state. As T — co they are more likely to be in the same state.

11



